1,288 research outputs found
A Market Utility-Based Model for Capacity Scheduling in Mass Services
Only a small set of employee scheduling articles have considered an objective of profit or contribution maximization, as opposed to the traditional objective of cost (including opportunity costs) minimization. In this article, we present one such formulation that is a market utility-based model for planning and scheduling in mass services (mums), mums is a holistic approach to market-based service capacity scheduling. The mums framework provides the structure for modeling the consequences of aligning competitive priorities and service attributes with an element of the firm’s service infrastructure. We developed a new linear programming formulation for the shifts-scheduling problem that uses market share information generated by customer preferences for service attributes. The shift-scheduling formulation within the framework of mums provides a business-level model that predicts the economic impact of the employee schedule. We illustrated the shift-scheduling model with empirical data, and then compared its results with models using service standard and productivity standard approaches. The result of the empirical analysis provides further justification for the development of the market-based approach. Last, we discuss implications of this methodology for future research
Automatic correction of hand pointing in stereoscopic depth
In order to examine whether stereoscopic depth information could drive fast automatic correction of hand pointing, an experiment was designed in a 3D visual environment in which participants were asked to point to a target at different stereoscopic depths as quickly and accurately as possible within a limited time window (≤300 ms). The experiment consisted of two tasks: "depthGO" in which participants were asked to point to the new target position if the target jumped, and "depthSTOP" in which participants were instructed to abort their ongoing movements after the target jumped. The depth jump was designed to occur in 20% of the trials in both tasks. Results showed that fast automatic correction of hand movements could be driven by stereoscopic depth to occur in as early as 190 ms.This work was supported by the Grants from the National Natural Science Foundation of China (60970062 and 61173116) and the Doctoral Fund of Ministry of Education of China (20110072110014)
Binary neutron-star mergers with Whisky and SACRA: First quantitative comparison of results from independent general-relativistic hydrodynamics codes
We present the first quantitative comparison of two independent
general-relativistic hydrodynamics codes, the Whisky code and the SACRA code.
We compare the output of simulations starting from the same initial data and
carried out with the configuration (numerical methods, grid setup, resolution,
gauges) which for each code has been found to give consistent and sufficiently
accurate results, in particular in terms of cleanness of gravitational
waveforms. We focus on the quantities that should be conserved during the
evolution (rest mass, total mass energy, and total angular momentum) and on the
gravitational-wave amplitude and frequency. We find that the results produced
by the two codes agree at a reasonable level, with variations in the different
quantities but always at better than about 10%.Comment: Published on Phys. Rev.
DIRECT ESTIMATION OF ABOVEGROUND FOREST PRODUCTIVITY THROUGH HYPERSPECTRAL REMOTE SENSING OF CANOPY NITROGEN
The concentration of nitrogen in foliage has been related to rates of net photosynthesis across a wide range of plant species and functional groups and thus represents a simple and biologically meaningful link between terrestrial cycles of carbon and nitrogen. Although foliar N is used by ecosystem models to predict rates of leaf‐level photosynthesis, it has rarely been examined as a direct scalar to stand‐level carbon gain. Establishment of such relationships would greatly simplify the nature of forest C and N linkages, enhancing our ability to derive estimates of forest productivity at landscape to regional scales. Here, we report on a highly predictive relationship between whole‐canopy nitrogen concentration and aboveground forest productivity in diverse forested stands of varying age and species composition across the 360 000‐ha White Mountain National Forest, New Hampshire, USA. We also demonstrate that hyperspectral remote sensing can be used to estimate foliar N concentration, and hence forest production across a large number of contiguous images. Together these data suggest that canopy‐level N concentration is an important correlate of productivity in these forested systems, and that imaging spectrometry of canopy N can provide direct estimates of forest productivity across large landscapes
High efficiency thermionic converter studies
Research in thermionic energy conversion technology is reported. The objectives were to produce converters suitable for use in out of core space reactors, radioisotope generators, and solar satellites. The development of emitter electrodes that operate at low cesium pressure, stable low work function collector electrodes, and more efficient means of space charge neutralization were investigated to improve thermionic converter performance. Potential improvements in collector properties were noted with evaporated thin film barium oxide coatings. Experiments with cesium carbonate suggest this substance may provide optimum combinations of cesium and oxygen for thermionic conversion
A Market-Utility Approach to Scheduling Employees
[Excerpt] Scheduling front-line service providers is a constant challenge for hospitality managers, given the inevitable tradeoff between service standards and operating expense. Traditional employee scheduling typically applies a cost-minimization approach to specify the level of front-line service providers who will be available to meet periodic demand. That cost includes the opportunity cost of lost customers, which is part of the pseudo-costs of understaffing. A confounding and often ignored effect, however, is the benefit generated by maintaining high service levels in a system where capacity exceeds demand. That is, scheduling more frontline service providers than the minimum level necessary to provide acceptable customer service (what might be considered to be overstaffing in some rubrics) may mean that customers receive service that is better than they expected (or what company standards prescribe).
In this paper we report on a scheduling approach that explicitly considers the interrelationships among customer preferences, customer demand, waiting times, and scheduling decisions. This approach, which we call the market-utility model for scheduling (MUMS), helps managers consider the dynamics of scheduling service employees. First, we discuss the components that make up this approach, which includes methods from customer-preferences modeling, service-capacity planning, and the four tasks of labor scheduling proposed by Thompson. Next, we\u27ll show how the model applies to balancing queue lengths and operating costs for an airport food-court vendor. Finally, we discuss the value of MUMS for hospitality managers
Introduction to dynamical horizons in numerical relativity
This paper presents a quasi-local method of studying the physics of dynamical
black holes in numerical simulations. This is done within the dynamical horizon
framework, which extends the earlier work on isolated horizons to
time-dependent situations. In particular: (i) We locate various kinds of
marginal surfaces and study their time evolution. An important ingredient is
the calculation of the signature of the horizon, which can be either spacelike,
timelike, or null. (ii) We generalize the calculation of the black hole mass
and angular momentum, which were previously defined for axisymmetric isolated
horizons to dynamical situations. (iii) We calculate the source multipole
moments of the black hole which can be used to verify that the black hole
settles down to a Kerr solution. (iv) We also study the fluxes of energy
crossing the horizon, which describes how a black hole grows as it accretes
matter and/or radiation.
We describe our numerical implementation of these concepts and apply them to
three specific test cases, namely, the axisymmetric head-on collision of two
black holes, the axisymmetric collapse of a neutron star, and a
non-axisymmetric black hole collision with non-zero initial orbital angular
momentum.Comment: 20 pages, 16 figures, revtex4. Several smaller changes, some didactic
content shortene
Numerical relativity with characteristic evolution, using six angular patches
The characteristic approach to numerical relativity is a useful tool in
evolving gravitational systems. In the past this has been implemented using two
patches of stereographic angular coordinates. In other applications, a
six-patch angular coordinate system has proved effective. Here we investigate
the use of a six-patch system in characteristic numerical relativity, by
comparing an existing two-patch implementation (using second-order finite
differencing throughout) with a new six-patch implementation (using either
second- or fourth-order finite differencing for the angular derivatives). We
compare these different codes by monitoring the Einstein constraint equations,
numerically evaluated independently from the evolution. We find that, compared
to the (second-order) two-patch code at equivalent resolutions, the errors of
the second-order six-patch code are smaller by a factor of about 2, and the
errors of the fourth-order six-patch code are smaller by a factor of nearly 50.Comment: 12 pages, 5 figures, submitted to CQG (special NFNR issue
Hyperboloidal slices for the wave equation of Kerr-Schild metrics and numerical applications
We present new results from two open source codes, using finite differencing
and pseudo-spectral methods for the wave equations in (3+1) dimensions. We use
a hyperboloidal transformation which allows direct access to null infinity and
simplifies the control over characteristic speeds on Kerr-Schild backgrounds.
We show that this method is ideal for attaching hyperboloidal slices or for
adapting the numerical resolution in certain spacetime regions. As an example
application, we study late-time Kerr tails of sub-dominant modes and obtain new
insight into the splitting of decay rates. The involved conformal wave equation
is freed of formally singular terms whose numerical evaluation might be
problematically close to future null infinity.Comment: 15 pages, 12 figure
Three-dimensional numerical general relativistic hydrodynamics. II. Long-term dynamics of single relativistic stars
This is the second in a series of papers on the construction and validation of a three-dimensional code for the solution of the coupled system of the Einstein equations and of the general relativistic hydrodynamic equations, and on the application of this code to problems in general relativistic astrophysics. In particular, we report on the accuracy of our code in the long-term dynamical evolution of relativistic stars and on some new physics results obtained in the process of code testing. The following aspects of our code have been validated: the generation of initial data representing perturbed general relativistic polytropic models (both rotating and nonrotating), the long-term evolution of relativistic stellar models, and the coupling of our evolution code to analysis modules providing, for instance, the detection of apparent horizons or the extraction of gravitational waveforms. The tests involve single nonrotating stars in stable equilibrium, nonrotating stars undergoing radial and quadrupolar oscillations, nonrotating stars on the unstable branch of the equilibrium configurations migrating to the stable branch, nonrotating stars undergoing gravitational collapse to a black hole, and rapidly rotating stars in stable equilibrium and undergoing quasiradial oscillations. We have carried out evolutions in full general relativity and compared the results to those obtained either with perturbation techniques, or with lower dimensional numerical codes, or in the Cowling approximation (in which all the perturbations of the spacetime are neglected). In all cases an excellent agreement has been found. The numerical evolutions have been carried out using different types of polytropic equations of state using either the rest-mass density only, or the rest-mass density and the internal energy as independent variables. New variants of the spacetime evolution and new high resolution shock capturing treatments based on Riemann solvers and slope limiters have been implemented and the results compared with those obtained from previous methods. In particular, we have found the "monotonized central differencing" limiter to be particularly effective in evolving the relativistic stellar models considered. Finally, we have obtained the first eigenfrequencies of rotating stars in full general relativity and rapid rotation. A long standing problem, such frequencies have not been obtained by other methods. Overall, and to the best of our knowledge, the results presented in this paper represent the most accurate long-term three-dimensional evolutions of relativistic stars available to date
- …
