2,407 research outputs found
Computational Models of Material Interfaces for the Study of Extracorporeal Shock Wave Therapy
Extracorporeal Shock Wave Therapy (ESWT) is a noninvasive treatment for a
variety of musculoskeletal ailments. A shock wave is generated in water and
then focused using an acoustic lens or reflector so the energy of the wave is
concentrated in a small treatment region where mechanical stimulation enhances
healing. In this work we have computationally investigated shock wave
propagation in ESWT by solving a Lagrangian form of the isentropic Euler
equations in the fluid and linear elasticity in the bone using high-resolution
finite volume methods. We solve a full three-dimensional system of equations
and use adaptive mesh refinement to concentrate grid cells near the propagating
shock. We can model complex bone geometries, the reflection and mode conversion
at interfaces, and the the propagation of the resulting shear stresses
generated within the bone. We discuss the validity of our simplified model and
present results validating this approach
How I treat thrombotic thrombocytopenic purpura and atypical haemolytic uraemic syndrome
Thrombotic thrombocytopenic purpura (TTP) and atypical haemolytic uraemic syndrome (aHUS) are acute, rare life-threatening thrombotic microangiopathies that require rapid diagnosis and treatment. They are defined by microangiopathic haemolytic anaemia and thrombocytopenia, with renal involvement primarily in aHUS and neurological and cardiological sequelae in TTP. Prompt treatment for most cases of both conditions is with plasma exchange initially and monoclonal therapy (rituximab in TTP and eculizumab in aHUS) as the mainstay of therapy. Here we discuss the diagnosis and therapy for both disorders
Whose 'New Vision' for adult social care? Involving service users and unpaid carers in policy research
Clinical practice guidelines for the management of atypical haemolytic uraemic syndrome in the United Kingdom
A novel tissue inhibitor of metalloproteinases-3 mutation reveals a common molecular phenotype in sorsby's fundus dystrophy
Sorsby’s fundus dystrophy (SFD) is a dominantly inherited
degenerative disease of the retina that leads to
loss of vision in middle age. It has been shown to be
caused by mutations in the gene for tissue inhibitor of
metalloproteinases-3 (TIMP-3). Five different mutations
have previously been identified, all introducing an extra
cysteine residue into exon 5 (which forms part of the
C-terminal domain) of the TIMP-3 molecule; however,
the significance of these mutations to the disease phenotype
was unknown. In this report, we describe the
expression of several of these mutated genes, together
with a previously unreported novel TIMP-3 mutation
from a family with SFD that results in truncation of
most of the C-terminal domain of the molecule. Despite
these differences, all of these molecules are expressed
and exhibit characteristics of the normal protein, including
inhibition of metalloproteinases and binding to
the extracellular matrix. However, unlike wild-type
TIMP-3, they all form dimers. These observations, together
with the recent finding that expression of TIMP-3
is increased, rather than decreased, in eyes from patients
with SFD, provides compelling evidence that
dimerized TIMP-3 plays an active role in the disease
process by accumulating in the eye. Increased expression
of TIMP-3 is also observed in other degenerative
retinal diseases, including the more severe forms of agerelated
macular degeneration, the most common cause
of blindness in the elderly in developed countries. We
hypothesize that overexpression of TIMP-3 may prove to
be a critical step in the progression of a variety of degenerative
retinopathies
Inkjet printed TiO2 nanoparticles from aqueous solutions for dye sensitized solar cells (DSSCs)
This is the accepted version of the following article: Cherrington, R., Hughes, D. J., Senthilarasu, S. and Goodship, V. (2015), Inkjet-Printed TiO2 Nanoparticles from Aqueous Solutions for Dye-Sensitized Solar Cells (DSSCs). Energy Technology., which has been published in final form at http://dx.doi.org/10.1002/ente.201500096This work reports on the formulation of suitable ink for inkjet printing of TiO2 by investigating the critical parame- ters of particle size, pH, viscosity, and stability. Aqueous sus- pensions of TiO2 nanoparticles (Degussa, P25) were pre- pared with the addition of 25 wt % polyethylene glycol 400 as a humectant to minimize drying at the printer nozzles and reduce the likelihood of nozzle blockage. The inkjet-printed TiO2 layers were assembled into dye-sensitized solar cells. The current–voltage (I–V) characteristics were measured under one sun (air mass 1.5, 100 mW cm 2) using a source meter (Model 2400, Keithley Instrument, Inc.), and the active area of the cell was 0.25 cm2. The inkjet-printed TiO2 photoanode produced a device with a short-circuit current (Isc) of 9.42 mA cm 2, an open-circuit voltage (Voc) of 0.76 V, and a fill factor (FF) of 0.49, resulting in a power conversion efficiency (PCE) of 3.50 %.Engineering and Physical Sciences Research Council (EPSRC
Clinical features of a novel TIMP-3 mutation causing Sorsby's fundus dystrophy: implications for disease mechanism
AIMS: To describe the phenotype in three family members affected by a novel mutation in the gene coding for the enzyme tissue inhibitor of metalloproteinase-3 (TIMP-3).
METHODS: Three members of the same family were seen with a history of nyctalopia and visual loss due to maculopathy. Clinical features were consistent with Sorsby's fundus dystrophy. Exon 5 of the gene coding for TIMP-3 was amplified by the polymerase chain reaction, single strand conformation polymorphism analysis undertaken and exon 5 amplicons were directly sequenced.
RESULTS: Onset of symptoms was in the third to fourth decade. Five of six eyes had geographic macular atrophy rather than neovascularisation as a cause for central visual loss. Peripheral retinal pigmentary disturbances were present. Scotopic ERGs were abnormal in all three. Mutation analysis showed a GT transversion in all three resulting in a premature termination codon, E139X, deleting most of the carboxy terminal domain of TIMP-3.
CONCLUSIONS: The patients described had a form of Sorsby's fundus dystrophy which fell at the severe end of the spectrum of this disease. Postulated disease mechanisms include deposition of dimerised TIMP-3 protein
Digital printing of titanium dioxide for dye sensitized solar cells
Silicon solar cell manufacturing is an expensive and high energy consuming process. In contrast, dye sensitized solar cell production is less environmentally damaging with lower processing temperatures presenting a viable and low cost alternative to conventional production. This paper further enhances these environmental credentials by evaluating the digital printing and therefore additive production route for these cells. This is achieved here by investigating the formation and performance of a metal oxide photoelectrode using nanoparticle sized titanium dioxide. An ink-jettable material was formulated, characterized and printed with a piezoelectric inkjet head to produce a 2.6 µm thick layer. The resultant printed layer was fabricated into a functioning cell with an active area of 0.25 cm2 and a power conversion efficiency of 3.5%. The binder-free formulation resulted in a reduced processing temperature of 250 °C, compatible with flexible polyamide substrates which are stable up to temperatures of 350 ˚C. The authors are continuing to develop this process route by investigating inkjet printing of other layers within dye sensitized solar cells
Disparate roles of ATR and ATM in immunoglobulin class switch recombination and somatic hypermutation
13 pages, 3 figures, 4 tables.-- et al.Class switch recombination (CSR) and somatic hypermutation (SHM) are mechanistically related processes initiated by activation-induced cytidine deaminase. Here, we have studied the role of ataxia telangiectasia and Rad3-related protein (ATR) in CSR by analyzing the recombinational junctions, resulting from in vivo switching, in cells from patients with mutations in the ATR gene. The proportion of cells that have switched to immunoglobulin (Ig)A and IgG in the peripheral blood seems to be normal in ATR-deficient (ATRD) patients and the recombined S regions show a normal “blunt end-joining,” but impaired end joining with partially complementary (1–3 bp) DNA ends. There was also an increased usage of microhomology at the μ-α switch junctions, but only up to 9 bp, suggesting that the end-joining pathway requiring longer microhomologies (≥10 bp) may be ATR dependent. The SHM pattern in the Ig variable heavy chain genes is altered, with fewer mutations occurring at A and more mutations at T residues and thus a loss of strand bias in targeting A/T pairs within certain hotspots. These data suggest that the role of ATR is partially overlapping with that of ataxia telangiectasia–mutated protein, but that the former is also endowed with unique functional properties in the repair processes during CSR and SHM.This work was supported by the Swedish Research Council, the Swedish Society for Medical Research (SSMF), and the Swedish Doctors Association.Peer reviewe
Complement factor H and the hemolytic uremic syndrome
Immune recognition is coupled to powerful proinflammatory effector pathways that must be tightly regulated. The ancient alternative pathway of complement activation is one such proinflammatory pathway. Genetic susceptibility factors have been identified in both regulators and activating components of the alternative pathway that are associated with thrombotic microangiopathies, glomerulonephritides, and chronic conditions featuring debris deposition. These observations indicate that excessive alternative pathway activation promotes thrombosis in the microvasculature and tissue damage during debris accumulation. Intriguingly, distinct genetic changes in factor H (FH), a key regulator of the alternative pathway, are associated with hemolytic uremic syndrome (HUS), membranoproliferative glomerulonephritis (dense deposit disease), or age-related macular degeneration (AMD). A mouse model of HUS designed to mirror human mutations in FH has now been developed, providing new understanding of the molecular pathogenesis of complement-related endothelial disorders
- …
