27 research outputs found
Myelin status and oligodendrocyte lineage cells over time after spinal cord injury: What do we know and what still needs to be unwrapped?
Multimarker Flow Cytometric Characterization, Isolation and Differentiation of Neural Stem Cells and Progenitors of the Normal and Injured Mouse Subventricular Zone
Neural Stem Cells in the Immature, but Not the Mature, Subventricular Zone Respond Robustly to Traumatic Brain Injury
Pediatric traumatic brain injury is a significant problem that affects many children each year. Progress is being made in developing neuroprotective strategies to combat these injuries. However, investigators are a long way from therapies to fully preserve injured neurons and glia. To restore neurological function, regenerative strategies will be required. Given the importance of stem cells in repairing damaged tissues and the known persistence of neural precursors in the subventricular zone (SVZ), we evaluated regenerative responses of the SVZ to a focal brain lesion. As tissues repair more slowly with aging, injury responses of male Sprague Dawley rats at 6, 11, 17, and 60 days of age and C57Bl/6 mice at 14 days of age were compared. In the injured immature animals, cell proliferation in the dorsolateral SVZ more than doubled by 48 h. By contrast, the proliferative response was almost undetectable in the adult brain. Three approaches were used to assess the relative numbers of bona fide neural stem cells, as follows: the neurosphere assay (on rats injured at postnatal day 11, P11), flow cytometry using a novel 4-marker panel (on mice injured at P14) and staining for stem/progenitor cell markers in the niche (on rats injured at P17). Precursors from the injured immature SVZ formed almost twice as many spheres as precursors from uninjured age-matched brains. Furthermore, spheres formed from the injured brain were larger, indicating that the neural precursors that formed these spheres divided more rapidly. Flow cytometry revealed a 2-fold increase in the percentage of stem cells, a 4-fold increase in multipotential progenitor-3 cells and a 2.5-fold increase in glial-restricted progenitor-2/multipotential-3 cells. Analogously, there was a 2-fold increase in the mitotic index of nestin+/Mash1- immunoreactive cells within the immediately subependymal region. As the early postnatal SVZ is predominantly generating glial cells, an expansion of precursors might not necessarily lead to the production of many new neurons. On the contrary, many BrdU+/doublecortin+ cells were observed streaming out of the SVZ into the neocortex 2 weeks after injuries to P11 rats. However, very few new mature neurons were seen adjacent to the lesion 28 days after injury. Altogether, these data indicate that immature SVZ cells mount a more robust proliferative response to a focal brain injury than adult cells, which includes an expansion of stem cells, primitive progenitors and neuroblasts. Nonetheless, this regenerative response does not result in significant neuronal replacement, indicating that new strategies need to be implemented to retain the regenerated neurons and glia that are being produced.</jats:p
Dissociation of neuropathologic findings and cognition: case report of an apolipoprotein E epsilon2/epsilon2 genotype.
BackgroundThe apolipoprotein E (APOE) epsilon2 allele has been suggested as having a protective effect and delaying the age at onset of Alzheimer disease.ObjectiveTo describe a dissociation between neuropathologic findings with normal cognition in a woman with severe Alzheimer disease with the APOE epsilon2/epsilon2 genotype.DesignCase report from a community-based prospective study of persons 90 years or older (The 90+ Study).ParticipantA 92-year-old woman without dementia with the APOE epsilon2/epsilon2 genotype who lived independently without significant cognitive or functional loss and was a participant in The 90+ Study. She died in December 2004, and postmortem examination of her brain was performed.InterventionNeurologic examination and a battery of neuropsychological tests were performed 6 months and 1 month before death. Neuropathologic examination included Braak and Braak staging for senile plaques and neurofibrillary tangles.ResultsNeuropathologic examination of the brain revealed advanced senile plaque and neurofibrillary tangle disease consistent with a high likelihood of Alzheimer disease. At clinical evaluation, the participant demonstrated no dementia and only mild cognitive deficits.ConclusionsThe APOE genotype may have contributed to maintenance of cognition despite advanced neuropathologic findings of Alzheimer disease. This case suggests that the APOE epsilon2 isoform may have a protective effect against cognitive decline in Alzheimer disease that may be independent from senile plaques and neurofibrillary tangles
Mechanisms of Mouse Neural Precursor Expansion after Neonatal Hypoxia-Ischemia
Neonatal hypoxia-ischemia (H-I) is the leading cause of brain damage resulting from birth complications. Studies in neonatal rats have shown that H-I acutely expands the numbers of neural precursors (NPs) within the subventricular zone (SVZ). The aim of these studies was to establish which NPs expand after H-I and to determine how leukemia inhibitory factor (LIF) insufficiency affects their response. During recovery from H-I, the number of Ki67(+) cells in the medial SVZ of the injured hemisphere increased. Similarly, the number and size of primary neurospheres produced from the injured SVZ increased approximately twofold versus controls, and, upon differentiation, more than twice as many neurospheres from the damaged brain were tripotential, suggesting an increase in neural stem cells (NSCs). However, multimarker flow cytometry for CD133/LeX/NG2/CD140a combined with EdU incorporation revealed that NSC frequency diminished after H-I, whereas that of two multipotential progenitors and three unique glial-restricted precursors expanded, attributable to changes in their proliferation. By quantitative PCR, interleukin-6, LIF, and CNTF mRNA increased but with significantly different time courses, with LIF expression correlating best with NP expansion. Therefore, we evaluated the NP response to H-I in LIF-haplodeficient mice. Flow cytometry revealed that one subset of multipotential and bipotential intermediate progenitors did not increase after H-I, whereas another subset was amplified. Altogether, our studies demonstrate that neonatal H-I alters the composition of the SVZ and that LIF is a key regulator for a subset of intermediate progenitors that expand during acute recovery from neonatal H-I
Recommended from our members
Synaptic proteins, neuropathology and cognitive status in the oldest-old.
An increasing number of individuals in our population are surviving to over 90 years and a subset is at risk for developing dementia. However, senile plaque and neurofibrillary tangle pathology do not consistently differentiate individuals with and without dementia. Synaptic protein loss is a feature of aging and dementia and may dissociate 90+ individuals with and without dementia. Synaptophysin (SYN), postsynaptic density 95 (PSD-95) and growth-associated protein 43 (GAP-43) were studied in the frontal cortex of an autopsy series of 32 prospectively followed individuals (92-105 years) with a range of cognitive function. SYN protein levels were decreased in individuals with dementia and increased in those with clinical signs of cognitive impairment insufficient for a diagnosis of dementia. SYN but neither PSD-95 nor GAP-43 protein levels were significantly correlated with mini-mental status examination (MMSE) scores. Frontal cortex SYN protein levels may protect neuronal function in oldest-old individuals and reflect compensatory responses that may be involved with maintaining cognition
Recommended from our members
Synaptic proteins, neuropathology and cognitive status in the oldest-old.
An increasing number of individuals in our population are surviving to over 90 years and a subset is at risk for developing dementia. However, senile plaque and neurofibrillary tangle pathology do not consistently differentiate individuals with and without dementia. Synaptic protein loss is a feature of aging and dementia and may dissociate 90+ individuals with and without dementia. Synaptophysin (SYN), postsynaptic density 95 (PSD-95) and growth-associated protein 43 (GAP-43) were studied in the frontal cortex of an autopsy series of 32 prospectively followed individuals (92-105 years) with a range of cognitive function. SYN protein levels were decreased in individuals with dementia and increased in those with clinical signs of cognitive impairment insufficient for a diagnosis of dementia. SYN but neither PSD-95 nor GAP-43 protein levels were significantly correlated with mini-mental status examination (MMSE) scores. Frontal cortex SYN protein levels may protect neuronal function in oldest-old individuals and reflect compensatory responses that may be involved with maintaining cognition
