874 research outputs found

    Assembly-level analyses of accident-tolerant cladding concepts for a long-life civil marine SMR core using micro-heterogeneous duplex fuel

    Get PDF
    In this reactor physics study, we examine the neutronic performance of accident-tolerant fuel (ATF) claddings – austenitic type 310 stainless steel (310SS), ferritic Fe-20Cr-5Al (FeCrAl), advanced powder metallurgic ferritic (APMT), and silicon carbide (SiC)-based materials – as alternative cladding materials compared with Zircaloy-4 (Zr) cladding. The cores considered use 18% 235U enriched micro-heterogeneous ThO2-UO2 duplex fuel and, for purposes of comparison, 15% 235U enriched homogeneously mixed all-UO2 fuel, loaded into 13×13 pin arrays. A constant cladding coating thickness of 655 μm is assumed. We use the WIMS reactor physics code to analyse the associated reactivity, achievable discharge burnup, spectral variations, rim effect and reactivity feedback parameters for the candidate cladding materials at the assembly level. The results show that candidate fuels with 310SS cladding exhibit a ∼13% discharge burnup penalty compared to Zr due to the presence of a very high nickel (Ni) concentration. The high neutron absorption cross-sections of iron (Fe) in the FeCrAl and APMT claddings also lead to a ∼10% discharge burnup penalty. The fuels with SiC cladding can achieve a ∼1% higher discharge burnup compared to Zr due to the low thermal neutron absorption cross-sections of its constituents and the softer neutron spectrum. The claddings with lower capture cross-sections (SiC and Zr) exhibit higher relative fission power at the pellet periphery. For both candidate fuels, the end-of-life 239Pu (for UO2 fuel) and 233U (for duplex fuel) inventories are higher for the claddings (Fe-based: FeCrAl, APMT and steel-based: 310SS) with higher thermal capture cross-sections, unlike for SiC and Zr, where SiC provides higher end-of-life 239Pu and 233U inventories despite having lower capture cross-section than that of the Zr. Reactivity feedback parameter values (moderator and fuel temperature coefficients) are more negative for the duplex fuel than the UO2 fuel for all the candidate claddings, with claddings with harder spectra exhibiting more negative values. The duplex fuel yields a softer spectrum than the UO2 fuel with the candidate claddings, which improves neutron economy and thus discharge burnup

    Mass spectrometry imaging identifies palmitoylcarnitine as an immunological mediator during Salmonella Typhimurium infection

    Get PDF
    Salmonella Typhimurium causes a self-limiting gastroenteritis that may lead to systemic disease. Bacteria invade the small intestine, crossing the intestinal epithelium from where they are transported to the mesenteric lymph nodes (MLNs) within migrating immune cells. MLNs are an important site at which the innate and adaptive immune responses converge but their architecture and function is severely disrupted during S. Typhimurium infection. To further understand host-pathogen interactions at this site, we used mass spectrometry imaging (MSI) to analyse MLN tissue from a murine model of S. Typhimurium infection. A molecule, identified as palmitoylcarnitine (PalC), was of particular interest due to its high abundance at loci of S. Typhimurium infection and MLN disruption. High levels of PalC localised to sites within the MLNs where B and T cells were absent and where the perimeter of CD169+ sub capsular sinus macrophages was disrupted. MLN cells cultured ex vivo and treated with PalC had reduced CD4+CD25+ T cells and an increased number of B220+CD19+ B cells. The reduction in CD4+CD25+ T cells was likely due to apoptosis driven by increased caspase-3/7 activity. These data indicate that PalC significantly alters the host response in the MLNs, acting as a decisive factor in infection outcome

    Intermittent control models of human standing: similarities and differences

    Get PDF
    Two architectures of intermittent control are compared and contrasted in the context of the single inverted pendulum model often used for describing standing in humans. The architectures are similar insofar as they use periods of open-loop control punctuated by switching events when crossing a switching surface to keep the system state trajectories close to trajectories leading to equilibrium. The architectures differ in two significant ways. Firstly, in one case, the open-loop control trajectory is generated by a system-matched hold, and in the other case, the open-loop control signal is zero. Secondly, prediction is used in one case but not the other. The former difference is examined in this paper. The zero control alternative leads to periodic oscillations associated with limit cycles; whereas the system-matched control alternative gives trajectories (including homoclinic orbits) which contain the equilibrium point and do not have oscillatory behaviour. Despite this difference in behaviour, it is further shown that behaviour can appear similar when either the system is perturbed by additive noise or the system-matched trajectory generation is perturbed. The purpose of the research is to come to a common approach for understanding the theoretical properties of the two alternatives with the twin aims of choosing which provides the best explanation of current experimental data (which may not, by itself, distinguish beween the two alternatives) and suggesting future experiments to distinguish between the two alternatives

    Ferroic multipolar order and disorder in cyanoelpasolite molecular perovskites

    Get PDF
    We use a combination of variable-temperature high-resolution synchrotron X-ray powder diffraction measurements and Monte Carlo simulations to characterize the evolution of two different types of ferroic multipolar order in a series of cyanoelpasolite molecular perovskites. We show that ferroquadrupolar order in [C3N2H5]2Rb[Co(CN)6] is a first-order process that is well described by a four-state Potts model on the simple cubic lattice. Likewise, ferrooctupolar order in [NMe4]2B[Co(CN)6] (B = K, Rb, Cs) also emerges via a first-order transition that now corresponds to a six-state Potts model. Hence, for these particular cases, the dominant symmetry breaking mechanisms are well understood in terms of simple statistical mechanical models. By varying composition, we find that the effective coupling between multipolar degrees of freedom-and hence the temperature at which ferromultipolar order emerges-can be tuned in a chemically sensible manner. This article is part of the theme issue 'Mineralomimesis: natural and synthetic frameworks in science and technology'

    Vitamin D supplementation and breast cancer prevention : a systematic review and meta-analysis of randomized clinical trials

    Get PDF
    In recent years, the scientific evidence linking vitamin D status or supplementation to breast cancer has grown notably. To investigate the role of vitamin D supplementation on breast cancer incidence, we conducted a systematic review and meta-analysis of randomized controlled trials comparing vitamin D with placebo or no treatment. We used OVID to search MEDLINE (R), EMBASE and CENTRAL until April 2012. We screened the reference lists of included studies and used the “Related Article” feature in PubMed to identify additional articles. No language restrictions were applied. Two reviewers independently extracted data on methodological quality, participants, intervention, comparison and outcomes. Risk Ratios and 95% Confident Intervals for breast cancer were pooled using a random-effects model. Heterogeneity was assessed using the I2 test. In sensitivity analysis, we assessed the impact of vitamin D dosage and mode of administration on treatment effects. Only two randomized controlled trials fulfilled the pre-set inclusion criteria. The pooled analysis included 5372 postmenopausal women. Overall, Risk Ratios and 95% Confident Intervals were 1.11 and 0.74–1.68. We found no evidence of heterogeneity. Neither vitamin D dosage nor mode of administration significantly affected breast cancer risk. However, treatment efficacy was somewhat greater when vitamin D was administered at the highest dosage and in combination with calcium (Risk Ratio 0.58, 95% Confident Interval 0.23–1.47 and Risk Ratio 0.93, 95% Confident Interval 0.54–1.60, respectively). In conclusions, vitamin D use seems not to be associated with a reduced risk of breast cancer development in postmenopausal women. However, the available evidence is still limited and inadequate to draw firm conclusions. Study protocol code: FARM8L2B5L

    Genome analysis and physiological comparison of Alicycliphilus denitrificans strains BC and K601T

    Get PDF
    The genomes of the Betaproteobacteria Alicycliphilus denitrificans strains BC and K601T have been sequenced to get insight into the physiology of the two strains. Strain BC degrades benzene with chlorate as electron acceptor. The cyclohexanol-degrading denitrifying strain K601T is not able to use chlorate as electron acceptor, while strain BC cannot degrade cyclohexanol. The 16S rRNA sequences of strains BC and K601T are identical and the fatty acid methyl ester patterns of the strains are similar. Basic Local Alignment Search Tool (BLAST) analysis of predicted open reading frames of both strains showed most hits with Acidovorax sp. JS42, a bacterium that degrades nitro-aromatics. The genomes include strain-specific plasmids (pAlide201 in strain K601T and pAlide01 and pAlide02 in strain BC). Key genes of chlorate reduction in strain BC were located on a 120 kb megaplasmid (pAlide01), which was absent in strain K601T. Genes involved in cyclohexanol degradation were only found in strain K601T. Benzene and toluene are degraded via oxygenase-mediated pathways in both strains. Genes involved in the meta-cleavage pathway of catechol are present in the genomes of both strains. Strain BC also contains all genes of the ortho-cleavage pathway. The large number of mono- and dioxygenase genes in the genomes suggests that the two strains have a broader substrate range than known thus far.This research was supported by the Technology Foundation, the Applied Science Division (STW) of the Netherlands Organization for Scientific Research (NWO), project number 08053, the graduate school WIMEK (Wageningen Institute for Environment and Climate Research, which is part of SENSE Research School for Socio-Economic and Natural Sciences of the Environment, www.wimek-new.wur.nl and www.sense.nl), SKB (Dutch Centre for Soil Quality Management and Knowledge Transfer, www.skbodem.nl) and the Consolider project CSD-2007-00055. The research was incorporated in the TRIAS (TRIpartite Approaches 469 toward Soil systems processes) program (http://www.nwo.nl/en/research-and-results/programmes/alw/trias-tripartite-approach-to-soil-system-processes/index. html). Flávia Talarico Saia was supported by a FAPESP (the State of São Paulo Research Foundation) scholarship (2006-01997/5). The work conducted by the DOE JGI is supported by the Office of Science of the United States Department of Energy under contract number DE-AC02-05CH11231. Alfons Stams acknowledges support by an ERC (European Research Counsil) advanced grant (project 323009). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Impact of COVID-19 on cardiac procedure activity in England and associated 30-day mortality

    Get PDF
    BACKGROUND: Limited data exists on the impact of COVID-19 on national changes in cardiac procedure activity, including patient characteristics and clinical outcomes before and during the COVID-19 pandemic. METHODS AND RESULTS: All major cardiac procedures (n = 374,899) performed between 1st January and 31st May for the years 2018, 2019 and 2020 were analysed, stratified by procedure type and time-period (pre-COVID: January-May 2018 and 2019 and January-February 2020 and COVID: March-May 2020). Multivariable logistic regression was performed to examine the odds ratio (OR) of 30-day mortality for procedures performed in the COVID period.Overall, there was a deficit of 45,501 procedures during the COVID period compared to the monthly averages (March-May) in 2018-2019. Cardiac catheterisation and device implantations were the most affected in terms of numbers (n = 19,637 and n = 10,453) whereas surgical procedures such as MVR, other valve replacement/repair, ASD/VSD repair and CABG were the most affected as a relative percentage difference (Δ) to previous years' averages. TAVR was the least affected (Δ-10.6%). No difference in 30-day mortality was observed between pre-COVID and COVID time-periods for all cardiac procedures except cardiac catheterisation (OR 1.25 95% confidence interval (CI) 1.07-1.47, p = 0.006) and cardiac device implantation (OR 1.35 95% CI 1.15-1.58, p < 0.001). CONCLUSION: Cardiac procedural activity has significantly declined across England during the COVID-19 pandemic, with a deficit in excess of 45000 procedures, without an increase in risk of mortality for most cardiac procedures performed during the pandemic. Major restructuring of cardiac services is necessary to deal with this deficit, which would inevitably impact long-term morbidity and mortality

    Synthesis, PtS-type structure, and anomalous mechanics of the Cd(CN)₂ precursor Cd(NH₃)₂[Cd(CN)₄]

    Get PDF
    We report the nonaqueous synthesis of Cd(CN)₂ by oxidation of cadmium metal with Hg(CN)₂ in liquid ammonia. The reaction proceeds via an intermediate of composition Cd(NH₃)₂[Cd(CN)₄], which converts to Cd(CN)₂ on prolonged heating. Powder X-ray diffraction measurements allow us to determine the crystal structure of the previously-unreported Cd(NH₃)₂[Cd(CN)₄], which we find to adopt a twofold interpenetrating PtS topology. We discuss the effect of partial oxidation on the Cd/Hg composition of this intermediate, as well as its implications for the reconstructive nature of the deammination process. Variable-temperature X-ray diffraction measurements allow us to characterise the anisotropic negative thermal expansion (NTE) behaviour of Cd(NH₃)₂[Cd(CN)₄] together with the effect of Cd/Hg substitution; ab initio density functional theory (DFT) calculations reveal a similarly anomalous mechanical response in the form of both negative linear compressibility (NLC) and negative Poisson's ratios

    On ethically solvent leaders : the roles of pride and moral identity in predicting leader ethical behavior.

    Get PDF
    The popular media has repeatedly pointed to pride as one of the key factors motivating leaders to behave unethically. However, given the devastating consequences that leader unethical behavior may have, a more scientific account of the role of pride is warranted. The present study differentiates between authentic and hubristic pride and assesses its impact on leader ethical behavior, while taking into consideration the extent to which leaders find it important to their self-concept to be a moral person. In two experiments we found that with higher levels of moral identity, authentically proud leaders are more likely to engage in ethical behavior than hubristically proud leaders, and that this effect is mediated by leaders’ motivation to act selflessly. A field survey among organizational leaders corroborated that moral identity may bring the positive effect of authentic pride and the negative effect of hubristic pride on leader ethical behavior to the forefront

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac
    corecore