940 research outputs found

    Theoretical analysis of continuously driven dissipative solid-state qubits

    Full text link
    We study a realistic model for driven qubits using the numerical solution of the Bloch-Redfield equation as well as analytical approximations using a high-frequency scheme. Unlike in idealized rotating-wave models suitable for NMR or quantum optics, we study a driving term which neither is orthogonal to the static term nor leaves the adiabatic energy value constant. We investigate the underlying dynamics and analyze the spectroscopy peaks obtained in recent experiments. We show, that unlike in the rotating-wave case, this system exhibits nonlinear driving effects.We study the width of spectroscopy peaks and show, how a full analysis of the parameters of the system can be performed by comparing the first and second resonance. We outline the limitations of the NMR linewidth formula at low temperature and show, that spectrocopic peaks experience a strong shift which goes much beyond the Bloch-Siegert shift of the Eigenfrequency.Comment: Accepted for publication in Phys. Rev.

    Superpixel-based spatial amplitude and phase modulation using a digital micromirror device

    Get PDF
    We present a superpixel method for full spatial phase and amplitude control of a light beam using a digital micromirror device (DMD) combined with a spatial filter. We combine square regions of nearby micromirrors into superpixels by low pass filtering in a Fourier plane of the DMD. At each superpixel we are able to independently modulate the phase and the amplitude of light, while retaining a high resolution and the very high speed of a DMD. The method achieves a measured fidelity F=0.98F=0.98 for a target field with fully independent phase and amplitude at a resolution of 8×88\times 8 pixels per diffraction limited spot. For the LG10_{10} orbital angular momentum mode the calculated fidelity is F=0.99993F=0.99993, using 768×768768\times 768 DMD pixels. The superpixel method reduces the errors when compared to the state of the art Lee holography method for these test fields by 50%50\% and 18%18\%, with a comparable light efficiency of around 5%5\%. Our control software is publicly available.Comment: 9 pages, 6 figure

    Entanglement spectroscopy of a driven solid-state qubit and its detector

    Full text link
    We study the asymptotic dynamics of a driven quantum two level system coupled via a quantum detector to the environment. We find multi-photon resonances which are due to the entanglement of the qubit and the detector. Different regimes are studied by employing a perturbative Floquet-Born-Markov approach for the qubit+detector system, as well as non-perturbative real-time path integral schemes for the driven spin-boson system. We find analytical results for the resonances, including the red and the blue sidebands. They agree well with those of exact ab-initio calculations.Comment: 4 pages, 4 figure

    Unraveling the molecular and cellular mechanisms of neurological dysfunction in Tuberous Sclerosis Complex

    Get PDF
    Tuberous Sclerosis Complex (TSC) is a multi-organ disorder, which is characterized by the development of benign malformations and specific neurological and psychiatric symptoms. It was first formally described by the neurologist Bourneville in 1880, based on a female patient who presented with epilepsy, skin tags, facial rash, and sclerotic areas in some of the cerebral convolutions on pathological examination of the brain. TSC is a relatively common genetic syndrome with a birth incidence of 1:60001. Although all major organs are susceptible to TSC, the most frequently affected are the brain, skin, kidneys, heart, lung and eye. None of the manifestations associated with TSC is pathognomonic for the disorder and accordingly, diagnosis is made based on the presence of combinations of major and minor disease features, as revealed by clinical, radiological and pathological examination

    Pathlengths of open channels in multiple scattering media

    Get PDF
    We report optical measurements of the spectral width of open transmission channels in a three-dimensional diffusive medium. The light transmission through a sample is enhanced by efficiently coupling to open transmission channels using repeated digital optical phase conjugation. The spectral properties are investigated by enhancing the transmission, fixing the incident wavefront and scanning the wavelength of the laser. We measure the transmitted field to extract the field correlation function and the enhancement of the total transmission. We find that optimizing the total transmission leads to a significant increase in the frequency width of the field correlation function. Additionally we find that the enhanced transmission persists over an even larger frequency bandwidth. This result shows open channels in the diffusive regime are spectrally much wider than previous measurements in the localized regime suggest

    Programming balanced optical beam splitters in white paint

    Get PDF
    Wavefront shaping allows for ultimate control of light propagation in multiple-scattering media by adaptive manipulation of incident waves. We shine two separate wavefront-shaped beams on a layer of dry white paint to create two enhanced output speckle spots of equal intensity. We experimentally confirm by interference measurements that the output speckle spots are almost correlated like the two outputs of an ideal balanced beam splitter. The observed deviations from the phase behavior of an ideal beam splitter are analyzed with a transmission matrix model. Our experiments demonstrate that wavefront shaping in multiple-scattering media can be used to approximate the functionality of linear optical devices with multiple inputs and outputs

    Quantum-to-classical crossover for Andreev billiards in a magnetic field

    Get PDF
    We extend the existing quasiclassical theory for the superconducting proximity effect in a chaotic quantum dot, to include a time-reversal-symmetry breaking magnetic field. Random-matrix theory (RMT) breaks down once the Ehrenfest time τE\tau_E becomes longer than the mean time τD\tau_D between Andreev reflections. As a consequence, the critical field at which the excitation gap closes drops below the RMT prediction as τE/τD\tau_E/\tau_D is increased. Our quasiclassical results are supported by comparison with a fully quantum mechanical simulation of a stroboscopic model (the Andreev kicked rotator).Comment: 11 pages, 10 figure

    Superpixel-based spatial amplitude and phase modulation using a digital micromirror device.

    Get PDF
    This is the final version of the article. Available via open access from Optical Society of America via the DOI in this record.We present a superpixel method for full spatial phase and amplitude control of a light beam using a digital micromirror device (DMD) combined with a spatial filter. We combine square regions of nearby micromirrors into superpixels by low pass filtering in a Fourier plane of the DMD. At each superpixel we are able to independently modulate the phase and the amplitude of light, while retaining a high resolution and the very high speed of a DMD. The method achieves a measured fidelity F = 0.98 for a target field with fully independent phase and amplitude at a resolution of 8 × 8 pixels per diffraction limited spot. For the LG10 orbital angular momentum mode the calculated fidelity is F = 0.99993, using 768 × 768 DMD pixels. The superpixel method reduces the errors when compared to the state of the art Lee holography method for these test fields by 50% and 18%, with a comparable light efficiency of around 5%. Our control software is publicly available.We thank Duygu Akbulut, Hasan Yılmaz, Henri Thyrrestrup, Michael J. Van De Graaff, Pepijn W.H. Pinkse, Ad Lagendijk and Willem L. Vos for discussions. This work is part of the research program of the Stichting voor Fundamenteel Onderzoek der Materie (FOM). A.P.M. acknowledges European Research Council grant no. 279248

    Decoherence and relaxation of a qubit coupled to an Ohmic bath directly and via an intermediate harmonic oscillator

    Get PDF
    Using the numerical path integral method we investigate the decoherence and relaxation of qubits coupled to an Ohmic bath directly and via an intermediate harmonic oscillator (IHO). Here, we suppose the oscillation frequencies of the bath modes are higher than the IHO's. When we choose suitable parameters the qubits in the two models may have almost same decoherence and relaxation times. However, the decoherence and relaxation times of the qubit in the qubit-IHO-bath model can be modulated through changing the coupling coefficients of the qubit-IHO and IHO-bath and the oscillation frequency of the IHO.Comment: 9 pages, 6 figure
    corecore