1,389 research outputs found
Phase-separation phenomena in solutions of poly(2,6-dimethyl-1,4-phenylene oxide). III. Pulse-induced critical scattering of solutions in toluene
For the polymer-solvent system poly(phenylene oxide) in toluene the mechanism and kinetics of crystallization have been studied with the Pulse Induced Critical Scattering technique. It was found that after a delay-time the growth mechanism was diffusion controlled. The delay-time is thought to be connected with the nucleation of the crystallites and it disappeared in the seeded crystallizations studied. After incomplete melting of crystallites the first stages of growth resemble a condensation reaction
Electronic damping of molecular motion at metal surfaces
A method for the calculation of the damping rate due to electron-hole pair
excitation for atomic and molecular motion at metal surfaces is presented. The
theoretical basis is provided by Time Dependent Density Functional Theory
(TDDFT) in the quasi-static limit and calculations are performed within a
standard plane-wave, pseudopotential framework. The artificial periodicity
introduced by using a super-cell geometry is removed to derive results for the
motion of an isolated atom or molecule, rather than for the coherent motion of
an ordered over-layer. The algorithm is implemented in parallel, distributed
across both and space, and in a form compatible with the
CASTEP code. Test results for the damping of the motion of hydrogen atoms above
the Cu(111) surface are presented.Comment: 10 pages, 3 figure
Evolution of virulence: triggering host inflammation allows invading pathogens to exclude competitors.
Virulence is generally considered to benefit parasites by enhancing resource-transfer from host to pathogen. Here, we offer an alternative framework where virulent immune-provoking behaviours and enhanced immune resistance are joint tactics of invading pathogens to eliminate resident competitors (transferring resources from resident to invading pathogen). The pathogen wins by creating a novel immunological challenge to which it is already adapted. We analyse a general ecological model of 'proactive invasion' where invaders not adapted to a local environment can succeed by changing it to one where they are better adapted than residents. However, the two-trait nature of the 'proactive' strategy (provocation of, and adaptation to environmental change) presents an evolutionary conundrum, as neither trait alone is favoured in a homogenous host population. We show that this conundrum can be resolved by allowing for host heterogeneity. We relate our model to emerging empirical findings on immunological mediation of parasite competition
New minimal weight representations for left-to-right window methods
Abstract. For an integer w ≥ 2, a radix 2 representation is called a width-w nonadjacent form (w-NAF, for short) if each nonzero digit is an odd integer with absolute value less than 2 w−1, and of any w consecutive digits, at most one is nonzero. In elliptic curve cryptography, the w-NAF window method is used to efficiently compute nP where n is an integer and P is an elliptic curve point. We introduce a new family of radix 2 representations which use the same digits as the w-NAF but have the advantage that they result in a window method which uses less memory. This memory savings results from the fact that these new representations can be deduced using a very simple left-to-right algorithm. Further, we show that like the w-NAF, these new representations have a minimal number of nonzero digits. 1 Window Methods An operation fundamental to elliptic curve cryptography is scalar multiplication; that is, computing nP for an integer, n, and an elliptic curve point, P. A number of different algorithms have been proposed to perform this operation efficiently (see Ch. 3 of [4] for a recent survey). A variety of these algorithms, known as window methods, use the approach described in Algorithm 1.1. For example, suppose D = {0, 1, 3, 5, 7}. Using this digit set, Algorithm 1.1 first computes and stores P, 3P, 5P and 7P. After a D-radix 2 representation of n is computed its digits are read from left to right by the “for ” loop and nP is computed using doubling and addition operations (and no subtractions). One way to compute a D-radix 2 representation of n is to slide a 3-digit window from right to left across the {0, 1}-radix 2 representation of n (see Section 4). Using negative digits takes advantage of the fact that subtracting an elliptic curve point can be done just as efficiently as adding it. Suppose now that D
Symmetric-Asymmetric transition in mixtures of Bose-Einstein condensates
We propose a new kind of quantum phase transition in phase separated mixtures
of Bose-Einstein condensates. In this transition, the distribution of the two
components changes from a symmetric to an asymmetric shape. We discuss the
nature of the phase transition, the role of interface tension and the phase
diagram. The symmetric to asymmetric transition is the simplest quantum phase
transition that one can imagine. Careful study of this problem should provide
us new insight into this burgeoning field of discovery.Comment: 6 pages, 3 eps figure
Discrimination, labour markets and the Labour Market Prospects of Older Workers: What Can a Legal Case Teach us?
As governments become increasingly concerned about the fiscal implications of the ageing population, labour market policies have sought to encourage mature workers to remain in the labour force. The ‘human capital’ discourses motivating these policies rest on the assumption that older workers armed with motivation and vocational skills will be able to return to fulfilling work. This paper uses the post-redundancy recruitment experiences of former Ansett Airlines
flight attendants to develop a critique of these expectations. It suggests that policies to increase
older workers’ labour market participation will not succeed while persistent socially constructed age- and gender- typing shape labour demand. The conclusion argues for policies sensitive to the institutional structures that shape employer preferences, the competitive rationality of
discriminatory practices, and the irresolvable tension between workers’ human rights and employers’ property rights
Decoherence in Bose-Einstein Condensates: towards Bigger and Better Schroedinger Cats
We consider a quantum superposition of Bose-Einstein condensates in two
immiscible internal states. A decoherence rate for the resulting Schroedinger
cat is calculated and shown to be a significant threat to this macroscopic
quantum superposition of BEC's. An experimental scenario is outlined where the
decoherence rate due to the thermal cloud is dramatically reduced thanks to
trap engineering and "symmetrization" of the environment which allow for the
Schroedinger cat to be an approximate pointer states.Comment: 12 pages in RevTex; improved presentation; a new comment on
decoherence-free pointer subspaces in BEC; accepted in Phys.Rev.
Out-of-equilibrium singlet-triplet Kondo effect in a single C_60 quantum dot
We have used an electromigration technique to fabricate a
single-molecule transistor (SMT). Besides describing our electromigration
procedure, we focus and present an experimental study of a single molecule
quantum dot containing an even number of electrons, revealing, for two
different samples, a clear out-of-equilibrium Kondo effect. Low temperature
magneto-transport studies are provided, which demonstrates a Zeeman splitting
of the finite bias anomaly.Comment: 6 pages, 4 figure
Fast multi-computations with integer similarity strategy
Abstract. Multi-computations in finite groups, such as multiexponentiations and multi-scalar multiplications, are very important in ElGamallike public key cryptosystems. Algorithms to improve multi-computations can be classified into two main categories: precomputing methods and recoding methods. The first one uses a table to store the precomputed values, and the second one finds a better binary signed-digit (BSD) representation. In this article, we propose a new integer similarity strategy for multi-computations. The proposed strategy can aid with precomputing methods or recoding methods to further improve the performance of multi-computations. Based on the integer similarity strategy, we propose two efficient algorithms to improve the performance for BSD sparse forms. The performance factor can be improved from 1.556 to 1.444 and to 1.407, respectively
Fano resonance in electronic transport through a quantum wire with a side-coupled quantum dot: X-boson treatment
The transport through a quantum wire with a side coupled quantum dot is
studied. We use the X-boson treatment for the Anderson single impurity model in
the limit of . The conductance presents a minimum for values of T=0
in the crossover from mixed-valence to Kondo regime due to a destructive
interference between the ballistic channel associated with the quantum wire and
the quantum dot channel. We obtain the experimentally studied Fano behavior of
the resonance. The conductance as a function of temperature exhibits a
logarithmic and universal behavior, that agrees with recent experimental
results.Comment: 6 pages, 10 eps figs., revtex
- …
