1,087 research outputs found
Range vegetation type mapping and above-ground green biomass estimations using multispectral imagery
The author has identified the following significant results. Range vegetation types have been successfully mapped on a portion of the 68,000 acre study site located west of Baggs, Wyoming, using ERTS-1 imagery. These types have been ascertained from field transects over a five year period. Comparable studies will be made with EREP imagery. Above-ground biomass estimation studies are being conducted utilizing double sampling techniques on two similar study sites. Information obtained will be correlated with percent relative reflectance measurements obtained on the ground which will be related to image brightness levels. This will provide an estimate of above-ground green biomass with multispectral imagery
Growers say cannabis legalization excludes small growers, supports illicit markets, undermines local economies
H. Bodwitch is Postdoctoral Fellow, Department of Natural Resource Sciences, McGill University, Quebec, Canada; J. Carah is Senior Freshwater Ecologist, The Nature Conservancy, San Francisco; K.M. Daane is UC Cooperative Extension Specialist, Department of Environmental Science, Policy, and Management, UC Berkeley; C. Getz is Associate Cooperative Extension Specialist, Department of Environmental Science, Policy, and Management, UC Berkeley; T.E. Grantham is Assistant Cooperative Extension Specialist and Adjunct Professor, Department of Environmental Science, Policy, and Management, UC Berkeley; G.M. Hickey is Associate Professor, Department of Natural Resource Sciences, McGill University, Quebec, Canada; H. Wilson is Assistant Cooperative Extension Specialist, Department of Entomology, UC Riverside
A Reduction in Adult Blood Stream Infection and Case Fatality at a Large African Hospital following Antiretroviral Therapy Roll-Out
Introduction
Blood-stream infection (BSI) is one of the principle determinants of the morbidity and mortality associated with advanced HIV infection, especially in sub-Saharan Africa. Over the last 10 years, there has been rapid roll-out of anti-retroviral therapy (ART) and cotrimoxazole prophylactic therapy (CPT) in many high HIV prevalence African countries.
Methods
A prospective cohort of adults with suspected BSI presenting to Queen's Hospital, Malawi was recruited between 2009 and 2010 to describe causes of and outcomes from BSI. Comparison was made with a cohort pre-dating ART roll-out to investigate whether and how ART and CPT have affected BSI. Malawian census and Ministry of Health ART data were used to estimate minimum incidence of BSI in Blantyre district.
Results
2,007 patients were recruited, 90% were HIV infected. Since 1997/8, culture-confirmed BSI has fallen from 16% of suspected cases to 10% (p<0.001) and case fatality rate from confirmed BSI has fallen from 40% to 14% (p<0.001). Minimum incidence of BSI was estimated at 0.03/1000 years in HIV uninfected vs. 2.16/1000 years in HIV infected adults. Compared to HIV seronegative patients, the estimated incidence rate-ratio for BSI was 80 (95% CI:46–139) in HIV-infected/untreated adults, 568 (95% CI:302–1069) during the first 3 months of ART and 30 (95% CI:16–59) after 3 months of ART.
Conclusions
Following ART roll-out, the incidence of BSI has fallen and clinical outcomes have improved markedly. Nonetheless, BSI incidence remains high in the first 3 months of ART despite CPT. Further interventions to reduce BSI-associated mortality in the first 3 months of ART require urgent evaluation
Design of a speed meter interferometer proof-of-principle experiment
The second generation of large scale interferometric gravitational wave
detectors will be limited by quantum noise over a wide frequency range in their
detection band. Further sensitivity improvements for future upgrades or new
detectors beyond the second generation motivate the development of measurement
schemes to mitigate the impact of quantum noise in these instruments. Two
strands of development are being pursued to reach this goal, focusing both on
modifications of the well-established Michelson detector configuration and
development of different detector topologies. In this paper, we present the
design of the world's first Sagnac speed meter interferometer which is
currently being constructed at the University of Glasgow. With this
proof-of-principle experiment we aim to demonstrate the theoretically predicted
lower quantum noise in a Sagnac interferometer compared to an equivalent
Michelson interferometer, to qualify Sagnac speed meters for further research
towards an implementation in a future generation large scale gravitational wave
detector, such as the planned Einstein Telescope observatory.Comment: Revised version: 16 pages, 6 figure
Tune to touch: affective touch enhances learning of face identity in 4-month-old infants
Touch provides more than sensory input for discrimination of what is on the skin. From early in development it has a rewarding and motivational value, which may reflect an evolutionary mechanism that promotes learning and affiliative bonding. In the present study we investigated whether affective touch helps infants tune to social signals, such as faces. Four- month-old infants were habituated to an individual face with averted gaze, which typically does not engage infants to the same extent as direct gaze does. As in a previous study, in the absence of touch, infants did not learn the identity of this face. Critically, 4-month-old infants did learn to discriminate this face when parents provided gentle stroking, but they did not when they experienced a non-social tactile stimulation. A preliminary follow-up eye-tracking study (supplementary material) revealed no significant difference in the visual scanning of faces between touch and no-touch conditions, suggesting that affective touch may not affect the distribution of visual attention, but that it may promote more efficient learning of facial information
Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas
This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing
molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin
Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context
Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts
Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images
Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images
of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumorinfiltrating lymphocytes (TILs) based on H&E images from 13 TCGA tumor types. These TIL
maps are derived through computational staining using a convolutional neural network trained to
classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and
correlation with overall survival. TIL map structural patterns were grouped using standard
histopathological parameters. These patterns are enriched in particular T cell subpopulations
derived from molecular measures. TIL densities and spatial structure were differentially enriched
among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial
infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic
patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for
the TCGA image archives with insights into the tumor-immune microenvironment
Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas
Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN
An assessment of opportunities to dissect host genetic variation in resistance to infectious diseases in livestock
- …
