328 research outputs found
The transition temperature of the dilute interacting Bose gas
We show that the critical temperature of a uniform dilute Bose gas must
increase linearly with the s-wave scattering length describing the repulsion
between the particles. Because of infrared divergences, the magnitude of the
shift cannot be obtained from perturbation theory, even in the weak coupling
regime; rather, it is proportional to the size of the critical region in
momentum space. By means of a self-consistent calculation of the quasiparticle
spectrum at low momenta at the transition, we find an estimate of the effect in
reasonable agreement with numerical simulations.Comment: 4 pages, Revtex, to be published in Physical Review Letter
Applying Recent Argumentation Methods to Some Ancient Examples of Plausible Reasoning
Plausible (eikotic) reasoning known from ancient Greek (late Academic) skeptical philosophy is shown to be a clear notion that can be analyzed by argu- mentation methods, and that is important for argumentation studies. It is shown how there is a continuous thread running from the Sophists to the skeptical philosopher Carneades, through remarks of Locke and Bentham on the subject, to recent research in artificial intelligence. Eleven characteristics of plausible reasoning are specified by analyzing key examples of it recognized as important in ancient Greek skeptical philosophy using an artificial intelligence model called the Carneades Argumentation System (CAS). By applying CAS to ancient examples it is shown how plausible reasoning is especially useful for gaining a better understanding of evidential reasoning in law, and argued that it can also be applied to everyday argumentation. Our analysis of the snake and rope example of Carneades is also used to point out some ways CAS needs to be extended if it is to more fully model the views of this ancient philosopher on argumentation
Decavanadate interactions with actin: inhibition of G-actin polymerization and stabilization of decameric vanadate
Decameric vanadate species (V10) inhibit the rate and the extent of G-actin polymerization with an IC50 of 68 ± 22 lM and
17 ± 2 lM, respectively, whilst they induce F-actin depolymerization at a lower extent. On contrary, no effect on actin polymerization and depolymerization was detected for 2 mM concentration of ‘‘metavanadate’’ solution that contains ortho and metavanadate species,
as observed by combining kinetic with 51V NMR spectroscopy studies. Although at 25 C, decameric vanadate (10 lM) is unstable in the
assay medium, and decomposes following a first-order kinetic, in the presence of G-actin (up to 8 lM), the half-life increases 5-fold (from 5 to 27 h). However, the addition of ATP (0.2 mM) in the medium not only prevents the inhibition of G-actin polymerization by V10 but
it also decreases the half-life of decomposition of decameric vanadate species from 27 to 10 h. Decameric vanadate is also stabilized by the sarcoplasmic reticulum vesicles, which raise the half-life time from 5 to 18 h whereas no effects were observed in the presence of phosphatidylcholine liposomes, myosin or G-actin alone. It is proposed that the ‘‘decavanadate’’ interaction with G-actin, favored by the G-actin polymerization, stabilizes decameric vanadate species and induces inhibition of G-actin polymerization. Decameric vanadate stabilization by cytoskeletal and transmembrane proteins can account, at least in part, for decavanadate toxicity reported in the evaluation of vanadium (V) effects in biological systems
Recommended from our members
What Happened to the Bondholding Class? Public Debt, Power and the Top One Per Cent
In 1887 Henry Carter Adams produced a study demonstrating that the ownership of government bonds was heavily concentrated in the hands of a ‘bondholding class’ that lent to and, in Adams's view, controlled the government like dominant shareholders control a corporation. The interests of this bondholding class clashed with the interests of the masses, whose burdensome taxes financed the interest payments on government bonds. Since the late nineteenth century there has been plenty of debate about the ownership of the public debt. But the empirical evidence offered to support the various arguments has been scant. As a result, political economists have few answers to questions first raised by Adams over century ago: how has the pattern of public debt ownership changed? Can we still speak of a powerful ‘bondholding class’? Does public debt redistribute income from taxpayers to public creditors? This article develops a new framework to address these questions. Anchored within a ‘capital as power’ approach, the research indicates a staggering pattern of concentration in the ownership of US public debt in the hands of the top one per cent of US households over the past three decades. Accordingly, the bondholding class is still alive and well in contemporary US capitalism
Corporate law and governance
This chapter surveys the theoretical and empirical research on the main mechanisms of corporate law and governance, discusses the main legal and regulatory institutions in different countries, and examines the comparative governance literature. Corporate governance is concerned with the reconciliation of conflicts of interest between various corporate claimholders and the resolution of collective action problems among dispersed investors. A fundamental dilemma of corporate governance emerges from this overview: large shareholder intervention needs to be regulated to guarantee better small investor protection; but this may increase managerial discretion and scope for abuse. Alternative methods of limiting abuse have yet to be proven effective
Functional bases of fiber length and angulation in muscle
The differences in angulation and length observed for the fibers of anatomical muscles may reflect two distinct mechanical requirements: (1) arrangement for pinnation, reflecting an increase in physiological crosssection and (2) arrangement for equivalent placement of sarcomeres, possibly associated with coordination. The observed differences in fiber angulation and length have different effects upon the responses of sarcomeres, specifically on their extent and rate of shortening and on the force they may generate. The basic mechanisms governing these effects and the various arrangements of muscles are reviewed. Fiber length and angulation in the complex M. adductor mandibulae externus 2 of a lizard were measured stereotactically; these values correlace well with the hypothesis that the muscle shows equivalence and demonstrate that angulation for pinnation is less constant. An outline for the study of muscle architecture and function, detailing the kinds of information required to estimate forces and evaluate muscle and fiber placements, is presented.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/50282/1/1051920106_ftp.pd
Supercurrent reversal in quantum dots
When two superconductors become electrically connected by a weak link a
zero-resistance supercurrent can flow. This supercurrent is carried by Cooper
pairs of electrons with a combined charge of twice the elementary charge, e.
The 2e charge quantum is clearly visible in the height of Shapiro steps in
Josephson junctions under microwave irradiation and in the magnetic flux
periodicity of h/2e in superconducting quantum interference devices. Several
different materials have been used to weakly couple superconductors, such as
tunnel barriers, normal metals, or semiconductors. Here, we study supercurrents
through a quantum dot created in a semiconductor nanowire by local
electrostatic gating. Due to strong Coulomb interaction, electrons only tunnel
one-by-one through the discrete energy levels of the quantum dot. This
nevertheless can yield a supercurrent when subsequent tunnel events are
coherent. These quantum coherent tunnelling processes can result in either a
positive or a negative supercurrent, i.e. in a normal or a pi-junction,
respectively. We demonstrate that the supercurrent reverses sign by adding a
single electron spin to the quantum dot. When excited states of the quantum dot
are involved in transport, the supercurrent sign also depends on the character
of the orbital wavefunctions
Monocyte Subset Dynamics in Human Atherosclerosis Can Be Profiled with Magnetic Nano-Sensors
Monocytes are circulating macrophage and dendritic cell precursors that populate healthy and diseased tissue. In humans, monocytes consist of at least two subsets whose proportions in the blood fluctuate in response to coronary artery disease, sepsis, and viral infection. Animal studies have shown that specific shifts in the monocyte subset repertoire either exacerbate or attenuate disease, suggesting a role for monocyte subsets as biomarkers and therapeutic targets. Assays are therefore needed that can selectively and rapidly enumerate monocytes and their subsets. This study shows that two major human monocyte subsets express similar levels of the receptor for macrophage colony stimulating factor (MCSFR) but differ in their phagocytic capacity. We exploit these properties and custom-engineer magnetic nanoparticles for ex vivo sensing of monocytes and their subsets. We present a two-dimensional enumerative mathematical model that simultaneously reports number and proportion of monocyte subsets in a small volume of human blood. Using a recently described diagnostic magnetic resonance (DMR) chip with 1 µl sample size and high throughput capabilities, we then show that application of the model accurately quantifies subset fluctuations that occur in patients with atherosclerosis
Large-scale Models Reveal the Two-component Mechanics of Striated Muscle
This paper provides a comprehensive explanation of striated muscle mechanics and contraction on the basis of filament rotations. Helical proteins, particularly the coiled-coils of tropomyosin, myosin and α-actinin, shorten their H-bonds cooperatively and produce torque and filament rotations when the Coulombic net-charge repulsion of their highly charged side-chains is diminished by interaction with ions. The classical “two-component model” of active muscle differentiated a “contractile component” which stretches the “series elastic component” during force production. The contractile components are the helically shaped thin filaments of muscle that shorten the sarcomeres by clockwise drilling into the myosin cross-bridges with torque decrease (= force-deficit). Muscle stretch means drawing out the thin filament helices off the cross-bridges under passive counterclockwise rotation with torque increase (= stretch activation). Since each thin filament is anchored by four elastic α-actinin Z-filaments (provided with force-regulating sites for Ca2+ binding), the thin filament rotations change the torsional twist of the four Z-filaments as the “series elastic components”. Large scale models simulate the changes of structure and force in the Z-band by the different Z-filament twisting stages A, B, C, D, E, F and G. Stage D corresponds to the isometric state. The basic phenomena of muscle physiology, i. e. latency relaxation, Fenn-effect, the force-velocity relation, the length-tension relation, unexplained energy, shortening heat, the Huxley-Simmons phases, etc. are explained and interpreted with the help of the model experiments
- …
