1,680 research outputs found

    N\'{e}el transition of lattice fermions in a harmonic trap: a real-space DMFT study

    Get PDF
    We study the magnetic ordering transition for a system of harmonically trapped ultracold fermions with repulsive interactions in a cubic optical lattice, within a real-space extension of dynamical mean-field theory (DMFT). Using a quantum Monte Carlo impurity solver, we establish that antiferromagnetic correlations are signaled, at strong coupling, by an enhanced double occupancy. This signature is directly accessible experimentally and should be observable well above the critical temperature for long-range order. Dimensional aspects appear less relevant than naively expected.Comment: 4 pages, 4 figure

    Superconducting single-mode contact as a microwave-activated quantum interferometer

    Full text link
    The dynamics of a superconducting quantum point contact biased at subgap voltages is shown to be strongly affected by a microwave electromagnetic field. Interference among a sequence of temporally localized, microwave-induced Landau-Zener transitions between current carrying Andreev levels results in energy absorption and in an increase of the subgap current by several orders of magnitude. The contact is an interferometer in the sense that the current is an oscillatory function of the inverse bias voltage. Possible applications to Andreev-level spectroscopy and microwave detection are discussed

    Momentum-dependent pseudogaps in the half-filled two-dimensional Hubbard model

    Full text link
    We compute unbiased spectral functions of the two-dimensional Hubbard model by extrapolating Green functions, obtained from determinantal quantum Monte Carlo simulations, to the thermodynamic and continuous time limits. Our results clearly resolve the pseudogap at weak to intermediate coupling, originating from a momentum selective opening of the charge gap. A characteristic pseudogap temperature T*, determined consistently from the spectra and from the momentum dependence of the imaginary-time Green functions, is found to match the dynamical mean-field critical temperature, below which antiferromagnetic fluctuations become dominant. Our results identify a regime where pseudogap physics is within reach of experiments with cold fermions in optical lattices.Comment: 10 pages, 13 figures; extended version to appear in Phys. Rev.

    Overtones of Isoscalar Giant Resonances in medium-heavy and heavy nuclei

    Full text link
    A semi-microscopic approach based on both the continum-random-phase-approximation (CRPA) method and a phenomenological treatment of the spreading effect is extended and applied to describe the main properties (particle-hole strength distribution, energy-dependent transition density, partial direct-nucleon-decay branching ratios) of the isoscalar giant dipole, second monopole, and second quadrupole resonances. Abilities of the approach are checked by description of gross properties of the main-tone resonances. Calculation results obtained for the resonances in a few singly- and doubly-closed-shell nuclei are compared with available experimental data.Comment: 12 pages, 14 figures, submitted to Phys. Rev.

    Cooling of a suspended nanowire by an AC Josephson current flow

    Get PDF
    We consider a nanoelectromechanical Josephson junction, where a suspended nanowire serves as a superconducting weak link, and show that an applied DC bias voltage an result in suppression of the flexural vibrations of the wire. This cooling effect is achieved through the transfer of vibronic energy quanta first to voltage driven Andreev states and then to extended quasiparticle electronic states. Our analysis, which is performed for a nanowire in the form of a metallic carbon nanotube and in the framework of the density matrix formalism, shows that such self-cooling is possible down to a level where the average occupation number of the lowest flexural vibration mode of the nanowire is 0.1\sim 0.1.Comment: 4 pages, 3 figure

    Voltage-driven superconducting weak link as a refrigerator for cooling of nanomechanical vibrations

    Get PDF
    We consider a new type of cooling mechanism for a suspended nanowire acting as a weak link between two superconductive electrodes. By applying a bias voltage over the system, we show that the system can be viewed as a refrigerator for the nanomechanical vibrations, where energy is continuously transferred from the vibrational degrees of freedom to the extended quasiparticle states in the leads through the periodic modulation of the inter-Andreev level separation. The necessary coupling between the electronic and mechanical degrees of freedom responsible for this energy-transfer can be achieved both with an external magnetic or electrical field, and is shown to lead to an effective cooling of the vibrating nanowire. Using realistic parameters for a suspended nanowire in the form of a metallic carbon nanotube we analyze the evolution of the density matrix and demonstrate the possibility to cool the system down to a stationary vibron population of 0.1\sim 0.1. Furthermore, it is shown that the stationary occupancy of the vibrational modes of the nanowire can be directly probed from the DC current responsible for carrying away the absorbed energy from the vibrating nanowire.Comment: 10 pages, 4 figure
    corecore