10,578 research outputs found

    Limits of Multilevel TASEP and similar processes

    Get PDF
    We study the asymptotic behavior of a class of stochastic dynamics on interlacing particle configurations (also known as Gelfand-Tsetlin patterns). Examples of such dynamics include, in particular, a multi-layer extension of TASEP and particle dynamics related to the shuffling algorithm for domino tilings of the Aztec diamond. We prove that the process of reflected interlacing Brownian motions introduced by Warren in \cite{W} serves as a universal scaling limit for such dynamics.Comment: 16 pages, 1 figur

    Asymptotics of symmetric polynomials with applications to statistical mechanics and representation theory

    Full text link
    We develop a new method for studying the asymptotics of symmetric polynomials of representation-theoretic origin as the number of variables tends to infinity. Several applications of our method are presented: We prove a number of theorems concerning characters of infinite-dimensional unitary group and their qq-deformations. We study the behavior of uniformly random lozenge tilings of large polygonal domains and find the GUE-eigenvalues distribution in the limit. We also investigate similar behavior for alternating sign matrices (equivalently, six-vertex model with domain wall boundary conditions). Finally, we compute the asymptotic expansion of certain observables in O(n=1)O(n=1) dense loop model.Comment: Published at http://dx.doi.org/10.1214/14-AOP955 in the Annals of Probability (http://www.imstat.org/aop/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Crystallization of random matrix orbits

    Full text link
    Three operations on eigenvalues of real/complex/quaternion (corresponding to β=1,2,4\beta=1,2,4) matrices, obtained from cutting out principal corners, adding, and multiplying matrices can be extrapolated to general values of β>0\beta>0 through associated special functions. We show that β\beta\to\infty limit for these operations leads to the finite free projection, additive convolution, and multiplicative convolution, respectively. The limit is the most transparent for cutting out the corners, where the joint distribution of the eigenvalues of principal corners of a uniformly-random general β\beta self-adjoint matrix with fixed eigenvalues is known as β\beta-corners process. We show that as β\beta\to\infty these eigenvalues crystallize on the irregular lattice of all the roots of derivatives of a single polynomial. In the second order, we observe a version of the discrete Gaussian Free Field (dGFF) put on top of this lattice, which provides a new explanation of why the (continuous) Gaussian Free Field governs the global asymptotics of random matrix ensembles.Comment: 25 pages. v2: misprints corrected, to appear in IMR
    corecore