368 research outputs found
Calculations of the Local Density of States for some Simple Systems
A recently proposed convolution technique for the calculation of local
density of states is described more thouroughly and new results of its
application are presented. For separable systems the exposed method allows to
construct the ldos for a higher dimensionality out of lower dimensional parts.
Some practical and theoretical aspects of this approach are also discussed.Comment: 5 pages, 3 figure
Vibrational properties of amorphous silicon from tight-binding O(N) calculation
We present an O(N) algorithm to study the vibrational properties of amorphous
silicon within the framework of tight-binding approach. The dynamical matrix
elements have been evaluated numerically in the harmonic approximation
exploiting the short-range nature of the density matrix to calculate the
vibrational density of states which is then compared with the same obtained
from a standard O() algorithm. For the purpose of illustration, an
1000-atom model is studied to calculate the localization properties of the
vibrational eigenstates using the participation numbers calculation.Comment: 5 pages including 5 ps figures; added a figure and a few references;
accepted in Phys. Rev.
Development of a tight-binding potential for bcc-Zr. Application to the study of vibrational properties
We present a tight-binding potential based on the moment expansion of the
density of states, which includes up to the fifth moment. The potential is
fitted to bcc and hcp Zr and it is applied to the computation of vibrational
properties of bcc-Zr. In particular, we compute the isothermal elastic
constants in the temperature range 1200K < T < 2000K by means of standard Monte
Carlo simulation techniques. The agreement with experimental results is
satisfactory, especially in the case of the stability of the lattice with
respect to the shear associated with C'. However, the temperature decrease of
the Cauchy pressure is not reproduced. The T=0K phonon frequencies of bcc-Zr
are also computed. The potential predicts several instabilities of the bcc
structure, and a crossing of the longitudinal and transverse modes in the (001)
direction. This is in agreement with recent ab initio calculations in Sc, Ti,
Hf, and La.Comment: 14 pages, 6 tables, 4 figures, revtex; the kinetic term of the
isothermal elastic constants has been corrected (Eq. (4.1), Table VI and
Figure 4
Tight-binding parameters from the full-potential linear muffin-tin orbital method: A feasibility study on NiAl
We have examined a method of direct extraction of accurate tight-binding
parameters from an ab-initio band-structure calculation. The linear muffin-tin
potential method, in its full-potential implementation, has been used to
provide the hamiltonian and overlap matrix elements in the momentum space.
These matrix elements are Fourier transformed to real space to produce the
tight-binding parameters. The feasibility of this method has been tested on the
intermetallic alloy NiAl, using spd orbitals for each atom. The parameters
generated for this alloy have been used as input to a real-space calculation of
the local density of states using the recursion method.Comment: 12 pages, RevTex, 5 figure
Towards a Linear-Scaling DFT Technique: The Density Matrix Approach
A recently proposed linear-scaling scheme for density-functional
pseudopotential calculations is described in detail. The method is based on a
formulation of density functional theory in which the ground state energy is
determined by minimization with respect to the density matrix, subject to the
condition that the eigenvalues of the latter lie in the range [0,1].
Linear-scaling behavior is achieved by requiring that the density matrix should
vanish when the separation of its arguments exceeds a chosen cutoff. The
limitation on the eigenvalue range is imposed by the method of Li, Nunes and
Vanderbilt. The scheme is implemented by calculating all terms in the energy on
a uniform real-space grid, and minimization is performed using the
conjugate-gradient method. Tests on a 512-atom Si system show that the total
energy converges rapidly as the range of the density matrix is increased. A
discussion of the relation between the present method and other linear-scaling
methods is given, and some problems that still require solution are indicated.Comment: REVTeX file, 27 pages with 4 uuencoded postscript figure
First-Principles Based Matrix-Green's Function Approach to Molecular Electronic Devices: General Formalism
Transport in molecular electronic devices is different from that in
semiconductor mesoscopic devices in two important aspects: (1) the effect of
the electronic structure and (2) the effect of the interface to the external
contact. A rigorous treatment of molecular electronic devices will require the
inclusion of these effects in the context of an open system exchanging particle
and energy with the external environment. This calls for combining the theory
of quantum transport with the theory of electronic structure starting from the
first-principles. We present a rigorous yet tractable matrix Green's function
approach for studying transport in molecular electronic devices, based on the
Non-Equilibrium Green's Function Formalism of quantum transport and the
density-functional theory of electronic structure using local orbital basis
sets. By separating the device rigorously into the molecular region and the
contact region, we can take full advantage of the natural spatial locality
associated with the metallic screening in the electrodes and focus on the
physical processes in the finite molecular region. This not only opens up the
possibility of using the existing well-established technique of molecular
electronic structure theory in transport calculations with little change, but
also allows us to use the language of qualitative molecular orbital theory to
interpret and rationalize the results of the computation. For the device at
equilibrium, our method provides an alternative approach for solving the
molecular chemisorption problem. For the device out of equilibrium, we show
that the calculation of elastic current transport through molecules, both
conceptually and computationally, is no more difficult than solving the
chemisorption problem.Comment: To appear in Chemical Physic
Soliton effects in dangling-bond wires on Si(001)
Dangling bond wires on Si(001) are prototypical one dimensional wires, which
are expected to show polaronic and solitonic effects. We present electronic
structure calculations, using the tight binding model, of solitons in
dangling-bond wires, and demonstrate that these defects are stable in
even-length wires, although approximately 0.1 eV higher in energy than a
perfect wire. We also note that in contrast to conjugated polymer systems,
there are two types of soliton and that the type of soliton has strong effects
on the energetics of the bandgap edges, with formation of intra-gap states
between 0.1 eV and 0.2 eV from the band edges. These intra-gap states are
localised on the atoms comprising the soliton.Comment: 6 pages, 3 figures, 3 tables, submitted to Phys. Rev.
Efficient index handling of multidimensional periodic boundary conditions
An efficient method is described to handle mesh indexes in multidimensional
problems like numerical integration of partial differential equations, lattice
model simulations, and determination of atomic neighbor lists. By creating an
extended mesh, beyond the periodic unit cell, the stride in memory between
equivalent pairs of mesh points is independent of their position within the
cell. This allows to contract the mesh indexes of all dimensions into a single
index, avoiding modulo and other implicit index operations.Comment: 2 pages, 0 figure
Recent progress with large-scale ab initio calculations: the CONQUEST code
While the success of density functional theory (DFT) has led to its use in a
wide variety of fields such as physics, chemistry, materials science and
biochemistry, it has long been recognised that conventional methods are very
inefficient for large complex systems, because the memory requirements scale as
and the cpu requirements as (where is the number of atoms). The
principles necessary to develop methods with linear scaling of the cpu and
memory requirements with system size ( methods) have been
established for more than ten years, but only recently have practical codes
showing this scaling for DFT started to appear. We report recent progress in
the development of the \textsc{Conquest} code, which performs
DFT calculations on parallel computers, and has a demonstrated ability to
handle systems of over 10,000 atoms. The code can be run at different levels of
precision, ranging from empirical tight-binding, through \textit{ab initio}
tight-binding, to full \textit{ab initio}, and techniques for calculating ionic
forces in a consistent way at all levels of precision will be presented.
Illustrations are given of practical \textsc{Conquest} calculations in the
strained Ge/Si(001) system.Comment: 12 pages, 7 figures, accepted by phys. stat. sol.
Modeling the series of (n x 2) Si-rich reconstructions of beta-SiC(001): a prospective atomic wire?
We perform ab initio plane wave supercell density functional calculations on
three candidate models of the (3 x 2) reconstruction of the beta-SiC(001)
surface. We find that the two-adlayer asymmetric-dimer model (TAADM) is
unambiguously favored for all reasonable values of Si chemical potential. We
then use structures derived from the TAADM parent to model the silicon lines
that are observed when the (3 x 2) reconstruction is annealed (the (n x 2)
series of reconstructions), using a tight-binding method. We find that as we
increase n, and so separate the lines, a structural transition occurs in which
the top addimer of the line flattens. We also find that associated with the
separation of the lines is a large decrease in the HOMO-LUMO gap, and that the
HOMO state becomes quasi-one-dimensional. These properties are qualititatively
and quantitatively different from the electronic properties of the original (3
x 2) reconstruction.Comment: 22 pages, including 6 EPS figure
- …
