63 research outputs found
Three-dimensional media for mobile devices
Cataloged from PDF version of article.This paper aims at providing an overview of the core technologies enabling the delivery of 3-D Media to next-generation mobile devices. To succeed in the design of the corresponding system, a profound knowledge about the human visual system and the visual cues that form the perception of depth, combined with understanding of the user requirements for designing user experience for mobile 3-D media, are required. These aspects are addressed first and related with the critical parts of the generic system within a novel user-centered research framework. Next-generation mobile devices are characterized through their portable 3-D displays, as those are considered critical for enabling a genuine 3-D experience on mobiles. Quality of 3-D content is emphasized as the most important factor for the adoption of the new technology. Quality is characterized through the most typical, 3-D-specific visual artifacts on portable 3-D displays and through subjective tests addressing the acceptance and satisfaction of different 3-D video representation, coding, and transmission methods. An emphasis is put on 3-D video broadcast over digital video broadcasting-handheld (DVB-H) in order to illustrate the importance of the joint source-channel optimization of 3-D video for its efficient compression and robust transmission over error-prone channels. The comparative results obtained identify the best coding and transmission approaches and enlighten the interaction between video quality and depth perception along with the influence of the context of media use. Finally, the paper speculates on the role and place of 3-D multimedia mobile devices in the future internet continuum involving the users in cocreation and refining of rich 3-D media content
Baseline characteristics of patients in the reduction of events with darbepoetin alfa in heart failure trial (RED-HF)
<p>Aims: This report describes the baseline characteristics of patients in the Reduction of Events with Darbepoetin alfa in Heart Failure trial (RED-HF) which is testing the hypothesis that anaemia correction with darbepoetin alfa will reduce the composite endpoint of death from any cause or hospital admission for worsening heart failure, and improve other outcomes.</p>
<p>Methods and results: Key demographic, clinical, and laboratory findings, along with baseline treatment, are reported and compared with those of patients in other recent clinical trials in heart failure. Compared with other recent trials, RED-HF enrolled more elderly [mean age 70 (SD 11.4) years], female (41%), and black (9%) patients. RED-HF patients more often had diabetes (46%) and renal impairment (72% had an estimated glomerular filtration rate <60 mL/min/1.73 m2). Patients in RED-HF had heart failure of longer duration [5.3 (5.4) years], worse NYHA class (35% II, 63% III, and 2% IV), and more signs of congestion. Mean EF was 30% (6.8%). RED-HF patients were well treated at randomization, and pharmacological therapy at baseline was broadly similar to that of other recent trials, taking account of study-specific inclusion/exclusion criteria. Median (interquartile range) haemoglobin at baseline was 112 (106–117) g/L.</p>
<p>Conclusion: The anaemic patients enrolled in RED-HF were older, moderately to markedly symptomatic, and had extensive co-morbidity.</p>
A novel unequal error protection scheme for 3-D video transmission over cooperative MIMO-OFDM systems
Currently, there has been intensive research to drive three-dimensional (3-D) video technology over mobile devices. Most recently, multiple input multiple output (MIMO) with orthogonal frequency division multiplexing (OFDM) and cooperative diversity have been major candidates for the fourth-generation mobile TV systems. This article presents a
novel unequal error protection (UEP) scheme for 3-D video transmission over cooperative MIMO-OFDM systems. Several 3-D video coding techniques are investigated to find the
best method for 3-D video transmission over the error-prone wireless channels. View plus depth (VpD) has been found the best technique over other techniques such as simulcast
coding (SC) and mixed-resolution stereo coding (MRSC) in terms of the performance. Various UEP schemes are proposed to protect the VpD signals with different importance
levels. Seven video transmission schemes for VpD are proposed depending on partitioning the video packets or sending them directly with different levels of protection. An adaptive technique based on a classified group of pictures (GoP) packets according to their protection
priority is adopted in the proposed UEP schemes. The adaptive method depends on dividing GoP to many packet groups (PG's). Each PG is classified to high-priority (HP) and low-priority (LP) packets. This classification depends on the current signal-to-noise ratio (SNR) in the wireless channels. A concatenating form of the rate-variable low-density parity-check (LDPC) codes and the MIMO system based on diversity of space-time block codes (STBC) is employed for protecting the prioritized video packets unequally with different channel code rates. For channel adaptation, the switching operations between the proposed schemes are employed to achieve a tradeoff between complexity and performance of the proposed system. Finally, three protocols for 3-D video transmission are proposed to
achieve high video quality at different SNRs with the lowest possible bandwidth
Performance of intensity-based non-normalized pointwise algorithms in dynamic speckle analysis
On the origin of electrostatic and steric repulsion in oil-in-water emulsion films from PEO-PPO-PEO triblock copolymers
- …
