8 research outputs found

    Superfluid Helium Tanker (SFHT) study

    Get PDF
    Replenishment of superfluid helium (SFHe) offers the potential of extending the on-orbit life of observatories, satellite instruments, sensors and laboratories which operate in the 2 K temperature regime. A reference set of resupply customers was identified as representing realistic helium servicing requirements and interfaces for the first 10 years of superfluid helium tanker (SFHT) operations. These included the Space Infrared Telescope Facility (SIRTF), the Advanced X-ray Astrophysics Facility (AXAF), the Particle Astrophysics Magnet Facility (Astromag), and the Microgravity and Materials Processing Sciences Facility (MMPS)/Critical Point Phenomena Facility (CPPF). A mixed-fleet approach to SFHT utilization was considered. The tanker permits servicing from the Shuttle cargo bay, in situ when attached to the OMV and carried to the user spacecraft, and as a depot at the Space Station. A SFHT Dewar ground servicing concept was developed which uses a dedicated ground cooling heat exchanger to convert all the liquid, after initial fill as normal fluid, to superfluid for launch. This concept permits the tanker to be filled to a near full condition, and then cooled without any loss of fluid. The final load condition can be saturated superfluid with any desired ullage volume, or the tank can be totally filed and pressurized. The SFHT Dewar and helium plumbing system design has sufficient component redundancy to meet fail-operational, fail-safe requirements, and is designed structurally to meet a 50 mission life usage requirement. Technology development recommendations were made for the selected SFHT concept, and a Program Plan and cost estimate prepared for a phase C/D program spanning 72 months from initiation through first launch in 1997

    Fine Particulate Air Pollution, Early Life Stress, and Their Interactive Effects on Adolescent Structural Brain Development: A Longitudinal Tensor-Based Morphometry Study

    Full text link
    Abstract Air pollution is a major environmental threat to public health; we know little, however, about its effects on adolescent brain development. Exposure to air pollution co-occurs, and may interact, with social factors that also affect brain development, such as early life stress (ELS). Here, we show that severity of ELS and fine particulate air pollution (PM2.5) are associated with volumetric changes in distinct brain regions, but also uncover regions in which ELS moderates the effects of PM2.5. We interviewed adolescents about ELS events, used satellite-derived estimates of ambient PM2.5 concentrations, and conducted longitudinal tensor-based morphometry to assess regional changes in brain volume over an approximately 2-year period (N = 115, ages 9–13 years at Time 1). For adolescents who had experienced less severe ELS, PM2.5 was associated with volumetric changes across several gray and white matter regions. Fewer effects of PM2.5 were observed for adolescents who had experienced more severe ELS, although occasionally they were in the opposite direction. This pattern of results suggests that for many brain regions, moderate to severe ELS largely constrains the effects of PM2.5 on structural development. Further theory and research is needed on the joint effects of ELS and air pollution on the brain.</jats:p

    Coronal Heating as Determined by the Solar Flare Frequency Distribution Obtained by Aggregating Case Studies

    Full text link
    Flare frequency distributions represent a key approach to addressing one of the largest problems in solar and stellar physics: determining the mechanism that counter-intuitively heats coronae to temperatures that are orders of magnitude hotter than the corresponding photospheres. It is widely accepted that the magnetic field is responsible for the heating, but there are two competing mechanisms that could explain it: nanoflares or Alfv\'en waves. To date, neither can be directly observed. Nanoflares are, by definition, extremely small, but their aggregate energy release could represent a substantial heating mechanism, presuming they are sufficiently abundant. One way to test this presumption is via the flare frequency distribution, which describes how often flares of various energies occur. If the slope of the power law fitting the flare frequency distribution is above a critical threshold, α=2\alpha=2 as established in prior literature, then there should be a sufficient abundance of nanoflares to explain coronal heating. We performed >>600 case studies of solar flares, made possible by an unprecedented number of data analysts via three semesters of an undergraduate physics laboratory course. This allowed us to include two crucial, but nontrivial, analysis methods: pre-flare baseline subtraction and computation of the flare energy, which requires determining flare start and stop times. We aggregated the results of these analyses into a statistical study to determine that α=1.63±0.03\alpha = 1.63 \pm 0.03. This is below the critical threshold, suggesting that Alfv\'en waves are an important driver of coronal heating.Comment: 1,002 authors, 14 pages, 4 figures, 3 tables, published by The Astrophysical Journal on 2023-05-09, volume 948, page 7
    corecore