2,789 research outputs found

    Viscous Instanton for Burgers' Turbulence

    Full text link
    We consider the tails of probability density functions (PDF) for different characteristics of velocity that satisfies Burgers equation driven by a large-scale force. The saddle-point approximation is employed in the path integral so that the calculation of the PDF tails boils down to finding the special field-force configuration (instanton) that realizes the extremum of probability. We calculate high moments of the velocity gradient xu\partial_xu and find out that they correspond to the PDF with ln[P(xu)](xu/Re)3/2\ln[{\cal P}(\partial_xu)]\propto-(-\partial_xu/{\rm Re})^{3/2} where Re{\rm Re} is the Reynolds number. That stretched exponential form is valid for negative xu\partial_xu with the modulus much larger than its root-mean-square (rms) value. The respective tail of PDF for negative velocity differences ww is steeper than Gaussian, lnP(w)(w/urms)3\ln{\cal P}(w)\sim-(w/u_{\rm rms})^3, as well as single-point velocity PDF lnP(u)(u/urms)3\ln{\cal P}(u)\sim-(|u|/u_{\rm rms})^3. For high velocity derivatives u(k)=xkuu^{(k)}=\partial_x^ku, the general formula is found: lnP(u(k))(u(k)/Rek)3/(k+1)\ln{\cal P}(|u^{(k)}|)\propto -(|u^{(k)}|/{\rm Re}^k)^{3/(k+1)}.Comment: 15 pages, RevTeX 3.

    Differential expression of the cationic amino acid transporter 2(B) in the adult rat brain

    Get PDF
    L-Arginine is a substrate for the synthesis of proteins, nitric oxide (NO), creatine, urea, proline, glutamate, polyamines and agmatine. In the central nervous system (CNS), arginine is extracted from the blood and exchanged by cells through carriers called cationic amino acid transporters (CAT) and belonging to the so-called system y+. In order to better understand the arginine transport in the CNS, we studied in detail the regional distribution of the cells expressing the CAT2(B) transcript in the adult rat brain by non-radioisotopic in situ hybridization. We show that CAT2(B) is expressed in neurons and oligodendrocytes throughout the brain, but is not detected in astrocytes. The pattern of localization of CAT2(B) in the normal adult rat brain fits closely that of CRT1, a specific creatine transporter. Our study demonstrates that the in vivo expression of CAT2(B) differs from that reported in vitro, implying that local cellular interactions should be taken into account in studies of gene regulation of the CAT2(B) gene. Our work suggests that CAT2(B) may play a role in case of increased NO production as well as arginine or creatine deficiency in the brain

    Fine structure and magneto-optics of exciton, trion, and charged biexciton states in single InAs quantum dots emitting at 1.3 um

    Full text link
    We present a detailed investigation into the optical characteristics of individual InAs quantum dots (QDs) grown by metalorganic chemical vapor deposition, with low temperature emission in the telecoms window around 1300 nm. Using micro-photoluminescence (PL) spectroscopy we have identified neutral, positively charged, and negatively charged exciton and biexciton states. Temperature-dependent measurements reveal dot-charging effects due to differences in carrier diffusivity. We observe a pronounced linearly polarized splitting of the neutral exciton and biexciton lines (~250 ueV) resulting from asymmetry in the QD structure. This asymmetry also causes a mixing of the excited trion states which is manifested in the fine structure and polarization of the charged biexciton emission; from this data we obtain values for the ratio between the anisotropic and isotropic electron-hole exchange energies of (Delta1)/(Delta0)= 0.2--0.5. Magneto-PL spectroscopy has been used to investigate the diamagnetic response and Zeeman splitting of the various exciton complexes. We find a significant variation in g-factor between the exciton, the positive biexciton, and the negative biexciton; this is also attributed to anisotropy effects and the difference in lateral extent of the electron and hole wavefunctions.Comment: 7 pages, 6 figures, submitted to Phys. Rev.

    An inertial range length scale in structure functions

    Get PDF
    It is shown using experimental and numerical data that within the traditional inertial subrange defined by where the third order structure function is linear that the higher order structure function scaling exponents for longitudinal and transverse structure functions converge only over larger scales, r>rSr>r_S, where rSr_S has scaling intermediate between η\eta and λ\lambda as a function of RλR_\lambda. Below these scales, scaling exponents cannot be determined for any of the structure functions without resorting to procedures such as extended self-similarity (ESS). With ESS, different longitudinal and transverse higher order exponents are obtained that are consistent with earlier results. The relationship of these statistics to derivative and pressure statistics, to turbulent structures and to length scales is discussed.Comment: 25 pages, 9 figure

    L-arginine uptake, the citrulline-NO cycle and arginase II in the rat brain: an in situ hybridization study

    Get PDF
    Nitric oxide (NO) is synthesized from a unique precursor, arginine, by nitric oxide synthase (NOS). In brain cells, arginine is supplied by protein breakdown or extracted from the blood through cationic amino acid transporters (CATs). Arginine can also be recycled from the citrulline produced by NOS activity, through argininosuccinate synthetase (AS) and argininosuccinate lyase (AL) activities, and metabolized by arginase. NOS, AS and AL constitute the so-called citrulline-NO cycle. In order to better understand arginine transport, recycling and degradation, we studied the regional distribution of cells expressing CAT1, CAT3, AS, AL, neuronal NOS (nNOS) and arginase II (AII) in the adult rat brain by non-radioisotopic in situ hybridization (ISH). CAT1, AL and AII presented an ubiquitous neuronal and glial expression, whereas CAT3 and AS were confined to neurons. nNOS was restricted to scattered neurons and a few brain nuclei and layers. We demonstrate by this study that cells expressing nNOS all appear to express the entire citrulline-NO cycle, whereas numerous cells expressing AL do not express AS. The differential expression of these genes within the same anatomical structure could indicate that intercellular exchanges of citrulline-NO cycle metabolites are relevant. Thus vicinal interactions should be taken into account to study their regulatory mechanisms
    corecore