293 research outputs found

    En-gauging Naturalness

    Get PDF
    The discovery of a 125.5 GeV Higgs with standard model-like couplings and naturalness considerations motivate gauge extensions of the MSSM. We analyse two variants of such an extension and carry out a phenomenological study of regions of the parameter space satisfying current direct and indirect constraints, employing state-of-the art two-loop RGE evolution and GMSB boundary conditions. We find that due to the appearance of non-decoupled D-terms it is possible to obtain a 125.5 GeV Higgs with stops below 2 TeV, while the uncolored sparticles could still lie within reach of the LHC. We compare the contributions of the stop sector and the non-decoupled D-terms to the Higgs mass, and study their effect on the Higgs couplings. We further investigate the nature of the next-to lightest supersymmetric particle, in light of the GMSB motivated searches currently being pursued by ATLAS and CMS.Comment: 45 pages, 17 figures, Supplementary material SupplementaryQSMxEW-Regime1.pdf attached in source. v2: preprint number added v3: Appendix A.6, Published in EPJ

    Clockworking FIMPs

    Full text link
    We study freeze-in dark matter production in models that rely on the Clockwork mechanism to suppress the dark matter couplings to the visible sector. We construct viable scalar and fermionic dark matter models within this Clockwork FIMP scenario, with several subtleties that need to be taken into account revealed in the model-building process. We also provide analytic, semi-analytic and numerical results for the diagonalization of Clockwork-type mass matrices and briefly discuss the LHC phenomenology of the corresponding scenarios.Comment: 27 pages, 3 figures. Some typos in the appendices corrected. Accepted for JHE

    The Dark Side of Electroweak Naturalness Beyond the MSSM

    Get PDF
    Weak scale supersymmetry (SUSY) remains a prime explanation for the radiative stability of the Higgs field. A natural account of the Higgs boson mass, however, strongly favors extensions of the Minimal Supersymmetric Standard Model (MSSM). A plausible option is to introduce a new supersymmetric sector coupled to the MSSM Higgs fields, whose associated states resolve the little hierarchy problem between the third generation squark masses and the weak scale. SUSY also accomodates a weakly interacting cold dark matter (DM) candidate in the form of a stable neutralino. In minimal realizations, the thus-far null results of direct DM searches, along with the DM relic abundance constraint, introduce a level of fine-tuning as severe as the one due to the SUSY little hierarchy problem. We analyse the generic implications of new SUSY sectors parametrically heavier than the minimal SUSY spectrum, devised to increase the Higgs boson mass, on this little neutralino DM problem. We focus on the SUSY operator of smallest scaling dimension in an effective field theory description, which modifies the Higgs and DM sectors in a correlated manner. Within this framework, we show that recent null results from the LUX experiment imply a tree-level fine-tuning for gaugino DM which is parametrically at least a few times larger than that of the MSSM. Higgsino DM whose relic abundance is generated through a thermal freeze-out mechanism remains also severely fine-tuned, unless the DM lies below the weak boson pair-production threshold. As in the MSSM, well-tempered gaugino-Higgsino DM is strongly disfavored by present direct detection results.Comment: 41 pages, 8 figures, references adde

    One jet to rule them all: monojet constraints and invisible decays of a 750 GeV diphoton resonance

    Get PDF
    The ATLAS and CMS collaborations recently reported a mild excess in the diphoton final state pointing to a resonance with a mass of around 750 GeV and a potentially large width. We consider the possibility of a scalar resonance being produced via gluon fusion and decaying to electroweak gauge bosons, jets and pairs of invisible particles, stable at collider scales. We compute limits from monojet searches on such a resonance and test their compatibility with the requirement for a large width. We also study whether the stable particle can be a a dark matter candidate and investigate the corresponding relic density constraints along with the collider limits. We show that monojet searches rule out a large part of the available parameter space and point out scenarios where a broad diphoton resonance can be reconciled with monojet constraints.Comment: Matches published versio

    Exploring SUSY light Higgs boson scenarios via dark matter experiments

    Full text link
    We examine the dark matter phenomenology in supersymmetric light higgs boson scenarios, adapting nonuniversal Higgs masses at the gauge coupling unification scale. The correct relic density is obtained mostly through the annihilation into a pseudoscalar AA, which gives high values for the self-annihilation cross-section at present times. Our analysis shows that most part of the AA pole region can produce detectable gamma-rays and antiproton signals, and still be compatible with with recent direct detection data from XENON100 and CDMS-II.Comment: 31 pages, 5 figures. Indirect detection statistical method changed, direct detection analysis enriched, references added, main conclusions unchanged but extended. Version to appear on JCA

    Characterising the 750 GeV diphoton excess

    Full text link
    We study kinematic distributions that may help characterise the recently observed excess in diphoton events at 750 GeV at the LHC Run 2. Several scenarios are considered, including spin-0 and spin-2 750 GeV resonances that decay directly into photon pairs as well as heavier parent resonances that undergo three-body or cascade decays. We find that combinations of the distributions of the diphoton system and the leading photon can distinguish the topology and mass spectra of the different scenarios, while patterns of QCD radiation can help differentiate the production mechanisms. Moreover, missing energy is a powerful discriminator for the heavy parent scenarios if they involve (effectively) invisible particles. While our study concentrates on the current excess at 750 GeV, the analysis is general and can also be useful for characterising other potential diphoton signals in the future.Comment: 24 pages, 11 figures, 1 table; v2: references added, version to appear in JHE

    Isospin-violating dark matter from a double portal

    Full text link
    We study a simple model that can give rise to isospin-violating interactions of Dirac fermion asymmetric dark matter to protons and neutrons through the interference of a scalar and U(1)' gauge boson contribution. The model can yield a large suppression of the elastic scattering cross section off Xenon relative to Silicon thus reconciling CDMS-Si and LUX results while being compatible with LHC findings on the 126 GeV Higgs, electroweak precision tests and flavour constraints.Comment: 25 pages, 7 figure
    corecore