678 research outputs found
Protecting an Ecosystem Service: Approaches to Understanding and Mitigating Threats to Wild Insect Pollinators
Increased insolation threshold for runaway greenhouse processes on Earth like planets
Because the solar luminosity increases over geological timescales, Earth
climate is expected to warm, increasing water evaporation which, in turn,
enhances the atmospheric greenhouse effect. Above a certain critical
insolation, this destabilizing greenhouse feedback can "runaway" until all the
oceans are evaporated. Through increases in stratospheric humidity, warming may
also cause oceans to escape to space before the runaway greenhouse occurs. The
critical insolation thresholds for these processes, however, remain uncertain
because they have so far been evaluated with unidimensional models that cannot
account for the dynamical and cloud feedback effects that are key stabilizing
features of Earth's climate. Here we use a 3D global climate model to show that
the threshold for the runaway greenhouse is about 375 W/m, significantly
higher than previously thought. Our model is specifically developed to quantify
the climate response of Earth-like planets to increased insolation in hot and
extremely moist atmospheres. In contrast with previous studies, we find that
clouds have a destabilizing feedback on the long term warming. However,
subsident, unsaturated regions created by the Hadley circulation have a
stabilizing effect that is strong enough to defer the runaway greenhouse limit
to higher insolation than inferred from 1D models. Furthermore, because of
wavelength-dependent radiative effects, the stratosphere remains cold and dry
enough to hamper atmospheric water escape, even at large fluxes. This has
strong implications for Venus early water history and extends the size of the
habitable zone around other stars.Comment: Published in Nature. Online publication date: December 12, 2013.
Accepted version before journal editing and with Supplementary Informatio
Quantum Stochastic Processes and the Modelling of Quantum Noise
This brief article gives an overview of quantum mechanics as a {\em quantum
probability theory}. It begins with a review of the basic operator-algebraic
elements that connect probability theory with quantum probability theory. Then
quantum stochastic processes is formulated as a generalization of stochastic
processes within the framework of quantum probability theory. Quantum Markov
models from quantum optics are used to explicitly illustrate the underlying
abstract concepts and their connections to the quantum regression theorem from
quantum optics.Comment: 14 pages, invited article for the second edition of Springer's
Encyclopedia of Systems and Control (to appear). Comments welcom
Human osteoblasts within soft peptide hydrogels promote mineralisation in vitro
Biomaterials that provide three-dimensional support networks for the culture of cells are being developed for a wide range of tissue engineering applications including the regeneration of bone. This study explores the potential of the versatile ionic-complementary peptide, FEFEFKFK, for such a purpose as this peptide spontaneously self-assembles into β-sheet-rich fibres that subsequently self-associate to form self-supporting hydrogels. Via simple live/dead cell assays, we demonstrated that 3 wt% hydrogels were optimal for the support of osteoblast cells. We went on to show that these cells are not only viable within the three-dimensional hydrogel but they also proliferate and produce osteogenic key proteins, that is, they behave like in vivo bone cells, over the 14-day period explored here. The gel elasticity increased over time when cells were present – in comparison to a decrease in control samples – indicating the deposition of matrix throughout the peptide scaffold. Moreover, significant quantities of calcium phosphate were deposited. Collectively, these data demonstrate that ionic-complementary octapeptides offer a suitable three-dimensional environment for osteoblastic cell function
What happens for informal caregivers during transition to increased levels of care for the person with dementia? A systematic review protocol
Abstract Background Dementia is a globally prevalent disease that requires ongoing and increasing levels of care, often provided in the first instance by informal caregivers. Supporting transitions in informal caregiving in dementia is a pertinent issue for caregivers, care providers and governments. There is no existing systematic review that seeks to identify and map the body of literature regarding the review question: ‘What happens for informal caregivers during transition to increased levels of care for the person with dementia?’ Methods/design ASSIA, CINAHL+, MEDLINE, PsycINFO, SCIE, Social Service Abstracts and Web of Science will be systematically searched. Specialist dementia research libraries will be contacted. Reviews identified as relevant during the search process, their reference lists, and reference lists of accepted papers will be hand-searched. Qualitative, quantitative and mixed methods studies that seek to represent the experiences of, or examine the impact upon, informal caregivers during transition to increased formal care for the person with dementia will be eligible for inclusion. Synthesis will be segregated into qualitative and quantitative papers. Findings will be summarised, and the review will be prepared for publication. Discussion The review will seek to identify potentially vulnerable groups in need of support and as such, inform the practice of those offering support. It will also inform future research by highlighting areas in which current literature is insubstantial. Systematic review registration PROSPERO CRD4201706724
Silicon-hydroxyapatite bioactive coatings (Si-HA) from diatomaceous earth and silica. Study of adhesion and proliferation of osteoblast-like cells
The aim of this study consisted on investigating
the influence of silicon substituted hydroxyapatite (Si–HA)
coatings over the human osteoblast-like cell line (SaOS-2)
behaviour. Diatomaceous earth and silica, together with
commercial hydroxyapatite were respectively the silicon
and HA sources used to produce the Si–HA coatings. HA
coatings with 0 wt% of silicon were used as control of the
experiment. Pulsed laser deposition (PLD) was the selected
technique to deposit the coatings. The Si–HA thin films
were characterized by Fourier Transformed Infrared
Spectroscopy (FTIR) demonstrating the efficient transfer of
Si to the HA structure. The in vitro cell culture was
established to assess the cell attachment, proliferation and
osteoblastic activity respectively by, Scanning Electron
Microscopy (SEM), DNA and alkaline phosphatase (ALP)
quantification. The SEM analysis demonstrated a similar
adhesion behaviour of the cells on the tested materials and
the maintenance of the typical osteoblastic morphology
along the time of culture. The Si–HA coatings did not
evidence any type of cytotoxic behaviour when compared
with HA coatings. Moreover, both the proliferation rate
and osteoblastic activity results showed a slightly better
performance on the Si–HA coatings from diatoms than on
the Si–HA from silica.This work was supported by the UE-Interreg IIIA (SP1.P151/03) Proteus project and Xunta de Galicia ( Projects: 2006/12 and PGIDITO5PXIC30301PN)
Asteroseismology and Interferometry
Asteroseismology provides us with a unique opportunity to improve our
understanding of stellar structure and evolution. Recent developments,
including the first systematic studies of solar-like pulsators, have boosted
the impact of this field of research within Astrophysics and have led to a
significant increase in the size of the research community. In the present
paper we start by reviewing the basic observational and theoretical properties
of classical and solar-like pulsators and present results from some of the most
recent and outstanding studies of these stars. We centre our review on those
classes of pulsators for which interferometric studies are expected to provide
a significant input. We discuss current limitations to asteroseismic studies,
including difficulties in mode identification and in the accurate determination
of global parameters of pulsating stars, and, after a brief review of those
aspects of interferometry that are most relevant in this context, anticipate
how interferometric observations may contribute to overcome these limitations.
Moreover, we present results of recent pilot studies of pulsating stars
involving both asteroseismic and interferometric constraints and look into the
future, summarizing ongoing efforts concerning the development of future
instruments and satellite missions which are expected to have an impact in this
field of research.Comment: Version as published in The Astronomy and Astrophysics Review, Volume
14, Issue 3-4, pp. 217-36
Gravity of human impacts mediates coral reef conservation gains
Coral reefs provide ecosystem goods and services for millions of people in the tropics, but reef conditions are declining worldwide. Effective solutions to the crisis facing coral reefs depend in part on understanding the context under which different types of conservation benefits can be maximized. Our global analysis of nearly 1,800 tropical reefs reveals how the intensity of human impacts in the surrounding seascape, measured as a function of human population size and accessibility to reefs (“gravity”), diminishes the effectiveness of marine reserves at sustaining reef fish biomass and the presence of top predators, even where compliance with reserve rules is high. Critically, fish biomass in high-compliance marine reserves located where human impacts were intensive tended to be less than a quarter that of reserves where human impacts were low. Similarly, the probability of encountering top predators on reefs with high human impacts was close to zero, even in high-compliance marine reserves. However, we find that the relative difference between openly fished sites and reserves (what we refer to as conservation gains) are highest for fish biomass (excluding predators) where human impacts are moderate and for top predators where human impacts are low. Our results illustrate critical ecological trade-offs in meeting key conservation objectives: reserves placed where there are moderate-to-high human impacts can provide substantial conservation gains for fish biomass, yet they are unlikely to support key ecosystem functions like higher-order predation, which is more prevalent in reserve locations with low human impacts
Bright spots among the world's coral reefs
Ongoing declines in the structure and function of the world’s coral reefs1, 2 require novel approaches to sustain these ecosystems and the millions of people who depend on them3. A presently unexplored approach that draws on theory and practice in human health and rural development4, 5 is to systematically identify and learn from the ‘outliers’—places where ecosystems are substantially better (‘bright spots’) or worse (‘dark spots’) than expected, given the environmental conditions and socioeconomic drivers they are exposed to. Here we compile data from more than 2,500 reefs worldwide and develop a Bayesian hierarchical model to generate expectations of how standing stocks of reef fish biomass are related to 18 socioeconomic drivers and environmental conditions. We identify 15 bright spots and 35 dark spots among our global survey of coral reefs, defined as sites that have biomass levels more than two standard deviations from expectations. Importantly, bright spots are not simply comprised of remote areas with low fishing pressure; they include localities where human populations and use of ecosystem resources is high, potentially providing insights into how communities have successfully confronted strong drivers of change. Conversely, dark spots are not necessarily the sites with the lowest absolute biomass and even include some remote, uninhabited locations often considered near pristine6. We surveyed local experts about social, institutional, and environmental conditions at these sites to reveal that bright spots are characterized by strong sociocultural institutions such as customary taboos and marine tenure, high levels of local engagement in management, high dependence on marine resources, and beneficial environmental conditions such as deep-water refuges. Alternatively, dark spots are characterized by intensive capture and storage technology and a recent history of environmental shocks. Our results suggest that investments in strengthening fisheries governance, particularly aspects such as participation and property rights, could facilitate innovative conservation actions that help communities defy expectations of global reef degradation
Observation of associated near-side and away-side long-range correlations in √sNN=5.02 TeV proton-lead collisions with the ATLAS detector
Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02 TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1 μb-1 of data as a function of transverse momentum (pT) and the transverse energy (ΣETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∼0) correlation that grows rapidly with increasing ΣETPb. A long-range “away-side” (Δϕ∼π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ΣETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ΣETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos2Δϕ modulation for all ΣETPb ranges and particle pT
- …
