213 research outputs found

    An improved time of flight gamma-ray telescope to monitor diffuse gamma-ray in the energy range 5 MeV - 50 MeV

    Get PDF
    A time of flight measuring device is the basic triggering system of most of medium and high energy gamma-ray telescopes. A simple gamma-ray telescope has been built in order to check in flight conditions the functioning of an advanced time of flight system. The technical ratings of the system are described. This telescope has been flown twice with stratospheric balloons, its axis being oriented at various Zenital directions. Flight results are presented for diffuse gamma-rays, atmospheric secondaries, and various causes of noise in the 5 MeV-50 MeV energy range

    Secondary gamma-ray production in a coded aperture mask

    Get PDF
    The application of the coded aperture mask to high energy gamma-ray astronomy will provide the capability of locating a cosmic gamma-ray point source with a precision of a few arc-minutes above 20 MeV. Recent tests using a mask in conjunction with drift chamber detectors have shown that the expected point spread function is achieved over an acceptance cone of 25 deg. A telescope employing this technique differs from a conventional telescope only in that the presence of the mask modifies the radiation field in the vicinity of the detection plane. In addition to reducing the primary photon flux incident on the detector by absorption in the mask elements, the mask will also be a secondary radiator of gamma-rays. The various background components in a CAMTRAC (Coded Aperture Mask Track Chamber) telescope are considered. Monte-Carlo calculations are compared with recent measurements obtained using a prototype instrument in a tagged photon beam line

    Helium Emission in the Type Ic SN 1999cq

    Get PDF
    We present the first unambiguous detection of helium emission lines in spectra of Type Ic supernovae (SNe Ic). The presence of He I lines, with full width at half maximum ~ 2000 km/s, and the distinct absence of any other intermediate-width emission (e.g., Halpha), implies that the ejecta of SN Ic 1999cq are interacting with dense circumstellar material composed of almost pure helium. This strengthens the argument that the progenitors of SNe Ic are core-collapse events in stars that have lost both their hydrogen and helium envelopes, either through a dense wind or mass-transfer to a companion. In this way, SN 1999cq is similar to supernovae such as SN 1987K and SN 1993J that helped firmly establish a physical connection between Type Ib and Type II supernovae. The light curve of SN 1999cq is very fast, with an extremely rapid rise followed by a quick decline. SN 1999cq is also found to exhibit a high level of emission at blue wavelengths (< 5500 A), likely resulting from either an unusually large amount of iron and iron-group element emission or uncharacteristically low reddening compared with other SNe Ic.Comment: 17 pages (AASTeX V5.0), 4 figures, accepted for publication in the Astronomical Journa

    The Optical Spectrum of the Vela Pulsar

    Full text link
    Our knowledge of the optical spectra of Isolated Neutron Stars (INSs) is limited by their intrinsic faintness. Among the fourteen optically identified INSs, medium resolution spectra have been obtained only for a handful of objects. No spectrum has been published yet for the Vela pulsar (PSR B0833-45), the third brightest (V=23.6) INS with an optical counterpart. Optical multi-band photometry underlines a flat continuum.In this work we present the first optical spectroscopy observations of the Vela pulsar, performed in the 4000-11000 A spectral range.Our observations have been performed at the ESO VLT using the FORS2 instrument. The spectrum of the Vela pulsar is characterized by a flat power-law (alpha = -0.04 +/- 0.04), which compares well with the values obtained from broad-band photometry. This confirms, once more, that the optical emission of Vela is entirely of magnetospheric origin. The comparison between the optical spectral indeces of rotation-powered INSs does not show evidence for a spectral evolution suggesting that, as in the X-rays, the INS aging does not affect the spectral properties of the magnetospheric emission. At the same time, the optical spectral indeces are found to be nearly always flatter then the X-rays ones, clearly suggesting a general spectral turnover at lower energies.Comment: 7 pages, 8 figures, accepted for publication in A&

    The Optical Polarisation of the Vela Pulsar revisited

    Full text link
    In this work we present a revised measurement of the phase-averaged optical polarisation of the Vela pulsar (PSR B0833-45), for which only one value has been published so far (Wagner & Seifert 2000). Our measurement has been obtained through an accurate reanalysis of archival polarisation observations obtained with the FORS instrument at the VLT. We have measured a phase-averaged linear polarisation degree P=9.4% +/- 4% and a position angle 146 +/- 11 deg, very close to the ones of the axis of symmetry of the X-ray arcs and jets detected by Chandra and of the pulsar proper motion.We have compared the measured phase-averaged optical polarisation with the expectations of different pulsars' magnetosphere models. We have found that all models consistently predict too large values of the phase-averaged linear polarization with respect to the observed one. This is probably a consequence of present models' limitations which neglect the contributions of various depolarisation effects. Interestingly, for the outer gap model we have found that, assuming synchrotron radiation for the optical emission, the observed polarisation position angle also implies an alignment between the pulsar rotational axis and the axis of symmetry of the X-ray arcs and jets.Comment: 8 pages, 4 figure

    SN Ib 1990I: Clumping and Dust in the Ejecta?

    Full text link
    Photometry and spectra of the type Ib SN 1990I are presented and analysed, covering about 400 days of evolution. The presence of optical helium lines is shown. SN 1990I seems to show higher velocities compared to a sample of type Ib events. The nebular emission lines display a high degree of asymmetry and the presence of fine structures. Using the [O I] 6300,64A flux, we estimate a lower limit on the oxygen mass to fall in the range (0.7-1.35) M_solar. The oxygen mass requires a filling factor as small as 10^{-2} on day 254, indicating a highly clumpy distribution of the oxygen material. A blueshift of the order 600 km/s is reported in the [O I] 6300,64A after day 254. The [Ca II] 7307.5A emission profile appears blueshifted as well at late epochs . We recover the quasi-bolometric "BVRI" light curve of SN 1990I. The constructed bolometric light curve shows a change of slope at late phases, with an e-folding time of 60 +/-2 d in the [50:200] d time interval, considerably faster than the one of {56}Co decay (i.e. 111.3 d), suggesting the gamma-rays escape with lower deposition, owing to the low mass nature of the ejecta. After day 200, an ee-folding time ~47 +/-2.8 d is measured. A simplified gamma-ray deposition model is applied after adding a contribution of about 35% to the computed pseudo-bolometric light curves to account for near-IR luminosities to estimate the ejecta and {56}Ni masses (M({56}Ni)=0.11 M_solar and M_{ej}=3.7 M_solar). The deficit in luminosity is estimated to be about 50% around day 308. The observed spectral blueshift combined with the dramatic and sudden drop in the pseudo-bolometric light curve and (B-V) colour is interpreted to be a consequence of dust condensation in the ejecta of SN 1990I around day 250.Comment: 17 pages, 11 gigures and 5 tables. To appear in A & A (accepted

    Light Echoes of Transients and Variables in the Local Universe

    Full text link
    Astronomical light echoes, the time-dependent light scattered by dust in the vicinity of varying objects, have been recognized for over a century. Initially, their utility was thought to be confined to mapping out the three-dimensional distribution of interstellar dust. Recently, the discovery of spectroscopically-useful light echoes around centuries-old supernovae in the Milky Way and the Large Magellanic Cloud has opened up new scientific opportunities to exploit light echoes. In this review, we describe the history of light echoes in the local Universe and cover the many new developments in both the observation of light echoes and the interpretation of the light scattered from them. Among other benefits, we highlight our new ability to spectroscopically classify outbursting objects, to view them from multiple perspectives, to obtain a spectroscopic time series of the outburst, and to establish accurate distances to the source event. We also describe the broader range of variable objects whose properties may be better understood from light echo observations. Finally, we discuss the prospects of new light echo techniques not yet realized in practice.Comment: 18 pages, 7 figures, 1 table. Accepted for publication in PAS
    corecore