4,642 research outputs found

    Radiating Collapse with Vanishing Weyl stresses

    Full text link
    In a recent approach in modelling a radiating relativistic star undergoing gravitational collapse the role of the Weyl stresses was emphasised. It is possible to generate a model which is physically reasonable by approximately solving the junction conditions at the boundary of the star. In this paper we demonstrate that it is possible to solve the Einstein field equations and the junction conditions exactly. This exact solution contains the Friedmann dust solution as a limiting case. We briefly consider the radiative transfer within the framework of extended irreversible thermodynamics and show that relaxational effects significantly alter the temperature profiles.Comment: 10 pages, submitted to IJMP-

    The role of shear in dissipative gravitational collapse

    Full text link
    In this paper we investigate the physics of a radiating star undergoing dissipative collapse in the form of a radial heat flux. Our treatment clearly demonstrates how the presence of shear affects the collapse process; we are in a position to contrast the physical features of the collapsing sphere in the presence of shear with the shear-free case. By employing a causal heat transport equation of the Maxwell-Cattaneo form we show that the shear leads to an enhancement of the core temperature thus emphasizing that relaxational effects cannot be ignored when the star leaves hydrostatic equilibrium.Comment: 15 pages, To appear in Int. J. Mod. Phys.

    The effect of a two-fluid atmosphere on relativistic stars

    Get PDF
    We model the physical behaviour at the surface of a relativistic radiating star in the strong gravity limit. The spacetime in the interior is taken to be spherically symmetrical and shear-free. The heat conduction in the interior of the star is governed by the geodesic motion of fluid particles and a nonvanishing radially directed heat flux. The local atmosphere in the exterior region is a two-component system consisting of standard pressureless (null) radiation and an additional null fluid with nonzero pressure and constant energy density. We analyse the generalised junction condition for the matter and gravitational variables on the stellar surface and generate an exact solution. We investigate the effect of the exterior energy density on the temporal evolution of the radiating fluid pressure, luminosty, gravitational redshift and mass flow at the boundary of the star. The influence of the density on the rate of gravitational collapse is also probed and the strong, dominant and weak energy conditions are also tested. We show that the presence of the additional null fluid has a significant effect on the dynamical evolution of the star.Comment: 31 pages, Minor corrections implemente

    Radiating spherical collapse with heat flow

    Get PDF
    We present here a simple model of radiative gravitational collapse with radial heat flux which describes qualitatively the stages close to the formation of a superdense cold star. Starting with a static general solution for a cold star, the model can generate solutions for the earlier evolutionary stages. The temporal evolution of the model is specified by solving the junction conditions appropriate for radiating gravitational collapse.Comment: 13 pages, including 3 figures, submitted to IJMP-

    Relaxational effects in radiating stellar collapse

    Get PDF
    Relaxational effects in stellar heat transport can in many cases be significant. Relativistic Fourier-Eckart theory is inherently quasi-stationary, and cannot incorporate these effects. The effects are naturally accounted for in causal relativistic thermodynamics, which provides an improved approximation to kinetic theory. Recent results, based on perturbations of a static star, show that relaxation effects can produce a significant increase in the central temperature and temperature gradient for a given luminosity. We use a simple stellar model that allows for non-perturbative deviations from staticity, and confirms qualitatively the predictions of the perturbative models

    Inflation driven by causal heat flux

    Get PDF
    We find a simple inflationary solution in an inhomogeneous spacetime with heat flux. The heat flux obeys a causal transport equation, and counteracts the inflationary decrease of energy density. At late times, the heat flux tends to zero and the fluid approaches the equation of state p=ρp=-\rho.Comment: Latex 5 pages; to appear Gen. Rel. Gra

    IL-2-Mediated In Vivo Expansion of Regulatory T Cells Combined with CD154-CD40 Co-Stimulation Blockade but Not CTLA-4 Ig Prolongs Allograft Survival in Naive and Sensitized Mice.

    Get PDF
    In recent years, regulatory T cells (Treg)-based immunotherapy has emerged as a promising strategy to promote operational tolerance after solid organ transplantation (SOT). However, a main hurdle for the therapeutic use of Treg in transplantation is their low frequency, particularly in non-lymphopenic hosts. We aimed to expand Treg directly in vivo and determine their efficacy in promoting donor-specific tolerance, using a stringent experimental model. Administration of the IL-2/JES6-1 immune complex at the time of transplantation resulted in significant expansion of donor-specific Treg, which suppressed alloreactive T cells. IL-2-mediated Treg expansion in combination with short-term CD154-CD40 co-stimulation blockade, but not CTLA-4 Ig or rapamycin, led to tolerance to MHC-mismatched skin grafts in non-lymphopenic mice, mainly by hindering alloreactive CD8(+) effector T cells and the production of alloantibodies. Importantly, this treatment also allowed prolonged survival of allografts in the presence of either donor-specific or cross-reactive memory cells. However, late rejection occurred in sensitized hosts, partly mediated by activated B cells. Overall, these data illustrate the potential but also some important limitations of Treg-based therapy in clinical SOT as well as the importance of concomitant immunomodulatory strategies in particular in sensitized hosts

    Non-adiabatic radiative collapse of a relativistic star under different initial conditions

    Full text link
    We examine the role of space-time geometry in the non-adiabatic collapse of a star dissipating energy in the form of radial heat flow, studying its evolution under different initial conditions. The collapse of a star with interior comprising of a homogeneous perfect fluid is compared with that of a star filled with inhomogeneous imperfect fluid with anisotropic pressure. Both the configurations are spherically symmetric, however, in the latter case, the physical space t=constantt= constant of the configurations is assumed to be inhomogeneous endowed with spheroidal or pseudo-spheroidal geometry. It is observed that as long as the collapse is shear-free, its evolution depends only on the mass and size of the star at the onset of collapse.Comment: To appear in Pramana- j. of physic

    Lipoxin A₄ prevents the progression of de novo and established endometriosis in a mouse model by attenuating prostaglandin E₂ production and estrogen signaling.

    Get PDF
    Endometriosis, a leading cause of pelvic pain and infertility, is characterized by ectopic growth of endometrial-like tissue and affects approximately 176 million women worldwide. The pathophysiology involves inflammatory and angiogenic mediators as well as estrogen-mediated signaling and novel, improved therapeutics targeting these pathways are necessary. The aim of this study was to investigate mechanisms leading to the establishment and progression of endometriosis as well as the effect of local treatment with Lipoxin A4 (LXA₄), an anti-inflammatory and pro-resolving lipid mediator that we have recently characterized as an estrogen receptor agonist. LXA₄ treatment significantly reduced endometriotic lesion size and downregulated the pro-inflammatory cytokines IL-1β and IL-6, as well as the angiogenic factor VEGF. LXA₄ also inhibited COX-2 expression in both endometriotic lesions and peritoneal fluid cells, resulting in attenuated peritoneal fluid Prostaglandin E₂ (PGE₂) levels. Besides its anti-inflammatory effects, LXA₄ differentially regulated the expression and activity of the matrix remodeling enzyme matrix metalloproteinase (MMP)-9 as well as modulating transforming growth factor (TGF)-β isoform expression within endometriotic lesions and in peritoneal fluid cells. We also report for first time that LXA₄ attenuated aromatase expression, estrogen signaling and estrogen-regulated genes implicated in cellular proliferation in a mouse model of disease. These effects were observed both when LXA₄ was administered prior to disease induction and during established disease. Collectively, our findings highlight potential targets for the treatment of endometriosis and suggest a pleotropic effect of LXA₄ on disease progression, by attenuating pro-inflammatory and angiogenic mediators, matrix remodeling enzymes, estrogen metabolism and signaling, as well as downstream proliferative pathways
    corecore