2,086 research outputs found

    The exponentiated Hencky strain energy in modelling tire derived material for moderately large deformations

    Full text link
    This work presents a hyper-viscoelastic model based on the Hencky-logarithmic strain tensor to model the response of a Tire Derived Material (TDM) undergoing moderately large deformations. TDM is a composite made by cold forging a mix of rubber fibers and grains, obtained by grinding scrap tires, and polyurethane binder. The mechanical properties are highly influenced by the presence of voids associated with the granular composition and low tensile strength due to the weak connection at the grain-matrix interface. For these reasons, TDM use is restricted to applications concerning a limited range of deformations. Experimental tests show that a central feature of the response is connected to highly nonlinear behavior of the material under volumetric deformation which conventional hyperelastic models fail in predicting. The strain energy function presented here is a variant of the exponentiated Hencky strain energy proposed by Neff et al., which for moderate strains is as good as the quadratic Hencky model and in the large strain region improves several important features from a mathematical point of view. The proposed form of the exponentiated Hencky energy possesses a set of parameters uniquely determined in the infinitesimal strain regime and an orthogonal set of parameters to determine the nonlinear response. The hyperelastic model is additionally incorporated in a finite deformation viscoelasticity framework that accounts for the two main dissipation mechanisms in TDMs, one at the microscale level and one at the macroscale level. The model is capable of predicting different deformation modes in a certain range of frequency and amplitude with a unique set of parameters with most of them having a clear physical meaning. Moreover, by comparing the predictions from the proposed constitutive model with experimental data we conclude that the new constitutive model gives accurate prediction

    Cation-induced changes in the circular dichroism spectrum of chloroplasts

    Get PDF
    Llimona Bruguera, Josep; Vilaseca, Josep (arquitecte)Primeríssim primer pla de: La Recompensa, fris de l'Arc de Triomf, situat al Passeig Lluís Companys. Realitzat amb pedra artificial de ciment portland. Representa el repartiment de recompenses als participants a l'Exposició Universal de 1888

    Spectral signatures of photosynthesis II: coevolution with other stars and the atmosphere on extrasolar worlds

    Full text link
    As photosynthesis on Earth produces the primary signatures of life that can be detected astronomically at the global scale, a strong focus of the search for extrasolar life will be photosynthesis, particularly photosynthesis that has evolved with a different parent star. We take planetary atmospheric compositions simulated by Segura, et al. (2003, 2005) for Earth-like planets around observed F2V and K2V stars, modeled M1V and M5V stars, and around the active M4.5V star AD Leo; our scenarios use Earth's atmospheric composition as well as very low O2 content in case anoxygenic photosynthesis dominates. We calculate the incident spectral photon flux densities at the surface of the planet and under water. We identify bands of available photosynthetically relevant radiation and find that photosynthetic pigments on planets around F2V stars may peak in absorbance in the blue, K2V in the red-orange, and M stars in the NIR, in bands at 0.93-1.1 microns, 1.1-1.4 microns, 1.5-1.8 microns, and 1.8-2.5 microns. In addition, we calculate wavelength restrictions for underwater organisms and depths of water at which they would be protected from UV flares in the early life of M stars. We estimate the potential productivity for both surface and underwater photosynthesis, for both oxygenic and anoxygenic photosynthesis, and for hypothetical photosynthesis in which longer wavelength, multi-photosystem series are used.Comment: 59 pages, 4 figures, 4 tables, forthcoming in Astrobiology ~March 200

    Magnetocaloric effect and magnetization in a Ni-Mn-Ga Heusler alloy in the vicinity of magnetostructural transition

    Full text link
    The magnetic and thermodynamic properties of a Ni2.19Mn0.81Ga alloy with coupled magnetic and structural (martensitic) phase transitions were studied experimentally and theoretically. The magnetocaloric effect was measured by a direct method in magnetic fields 0-26 kOe at temperatures close to the magnetostructural transition temperature. For theoretical description of the alloy properties near the magnetostructural transition a statistical model is suggested, that takes into account the coexistence of martensite and austenite domains in the vicinity of martensite transformation point.Comment: presented at ICM-2003, to appear in JMM

    Integrated MEMS metrology device using complementary measuring combs

    Get PDF
    The present invention provides a device for in-situ monitoring of material, process and dynamic properties of a MEMS device. The monitoring device includes a pair of comb drives, a cantilever suspension comprising a translating shuttle operatively connected with the pair of comb drives, structures for applying an electrical potential to the comb drives to displace the shuttle, structures for measuring an electrical potential from the pair of comb drives; measuring combs configured to measure the displacement of the shuttle, and structures for measuring an electrical capacitance of the measuring combs. Each of the comb drives may have differently sized comb finger gaps and a different number of comb finger gaps. The shuttle may be formed on two cantilevers perpendicularly disposed with the shuttle, whereby the cantilevers act as springs to return the shuttle to its initial position after each displacement

    Spectral signatures of photosynthesis I: Review of Earth organisms

    Full text link
    Why do plants reflect in the green and have a 'red edge' in the red, and should extrasolar photosynthesis be the same? We provide: 1) a brief review of how photosynthesis works; 2) an overview of the diversity of photosynthetic organisms, their light harvesting systems, and environmental ranges; 3) a synthesis of photosynthetic surface spectral signatures; 4) evolutionary rationales for photosynthetic surface reflectance spectra with regard to utilization of photon energy and the planetary light environment. Given the surface incident photon flux density spectrum and resonance transfer in light harvesting, we propose some rules with regard to where photosynthetic pigments will peak in absorbance: a) the wavelength of peak incident photon flux; b) the longest available wavelength for core antenna or reaction center pigments; and c) the shortest wavelengths within an atmospheric window for accessory pigments. That plants absorb less green light may not be an inefficient legacy of evolutionary history, but may actually satisfy the above criteria.Comment: 69 pages, 7 figures, forthcoming in Astrobiology March 200

    The evolution of photosynthesis and chloroplasts

    Get PDF
    This review focuses on what has been learned about the evolution of photosynthesis in the past five years, and omits evolution of CO2 assimilation. Oxygenic photosynthesis (using both photosystems I and II) has evolved from anoxygenic photosynthesis. The latter occurs in different variants, using either a type 1 photosystem resembling photosystem I, or a type 2 photosystem resembling photosystem II. Opinions differ as to how two types of photosystem came to be combined in the same organism, whether by gene transfer between bacteria, by fusion of bacteria, or as a result of gene duplication and evolution within one kind of bacterium. There are also different opinions about when oxygenic photosynthesis arose, in conjunction with the Great Oxygenation Event, 2.3 billion years before the present, or more than a billion years before that. Cyanobacteria were the first organisms to carry out oxygenic photosynthesis. Some of them gave rise to chloroplasts, while others continued to evolve as independent organisms, and the review outlines both lines of evolution. At the end we consider the evolution of photosynthesis in relation to the evolution of our planet

    A Constrained Sequential-Lamination Algorithm for the Simulation of Sub-Grid Microstructure in Martensitic Materials

    Full text link
    We present a practical algorithm for partially relaxing multiwell energy densities such as pertain to materials undergoing martensitic phase transitions. The algorithm is based on sequential lamination, but the evolution of the microstructure during a deformation process is required to satisfy a continuity constraint, in the sense that the new microstructure should be reachable from the preceding one by a combination of branching and pruning operations. All microstructures generated by the algorithm are in static and configurational equilibrium. Owing to the continuity constrained imposed upon the microstructural evolution, the predicted material behavior may be path-dependent and exhibit hysteresis. In cases in which there is a strict separation of micro and macrostructural lengthscales, the proposed relaxation algorithm may effectively be integrated into macroscopic finite-element calculations at the subgrid level. We demonstrate this aspect of the algorithm by means of a numerical example concerned with the indentation of an Cu-Al-Ni shape memory alloy by a spherical indenter.Comment: 27 pages with 9 figures. To appear in: Computer Methods in Applied Mechanics and Engineering. New version incorporates minor revisions from revie

    Diamagnetically Levitated MEMS Accelerometers

    Get PDF
    We introduce the theory and a proof-of-concept design for MEMS-based, diamagnetically-levitated accelerometers. The theory includes an equation for determining the diamagnetic force above a checkerboard configuration of magnets. We demonstrate both electronic probing and a rapid MEMS-based interferometer technique for position sensing of the proof mass. Through a proof-of-concept design, we show electrostatic-measurement sensitivity achieving 34 μg at a 0.1 V sense signal and interferometer-measurement sensitivity achieving 6 μg for in-plane vibrations at 5 Hz. We conclude by outlining batch-fabrication steps to produce levitated accelerometers
    corecore