141 research outputs found
Lipidomic identification of plasma lipids associated with pain behaviour and pathology in a mouse model of osteoarthritis
© 2020, The Author(s). Introduction: Osteoarthritis (OA) is the most common form of joint disease, causing pain and disability. Previous studies have demonstrated the role of lipid mediators in OA pathogenesis. Objectives: To explore potential alterations in the plasma lipidomic profile in an established mouse model of OA, with a view to identification of potential biomarkers of pain and/or pathology. Methods: Pain behaviour was assessed following destabilisation of the medial meniscus (DMM) model of OA (n = 8 mice) and compared to sham controls (n = 7). Plasma and knee joints were collected at 16weeks post-surgery. Plasma samples were analysed using ultra-high performance liquid chromatography accurate mass high resolution mass spectrometry (UHPLC-HR-MS) to identify potential differences in the lipidome, using multivariate and univariate statistical analyses. Correlations between pain behaviour, joint pathology and levels of lipids were investigated. Results: 24 lipids, predominantly from the lipid classes of cholesterol esters (CE), fatty acids (FA), phosphatidylcholines (PC), N-acylethanolamines (NAE) and sphingomyelins (SM), were differentially expressed in DMM plasma compared to sham plasma. Six of these lipids which were increased in the DMM model were identified as CE(18:2), CE(20:4), CE(22:6), PC(18:0/18:2), PC(38:7) and SM(d34:1). CEs were positively correlated with pain behaviour and all six lipid species were positively correlated with cartilage damage. Pathways shown to be involved in altered lipid homeostasis in OA were steroid biosynthesis and sphingolipid metabolism. Conclusion: We identify plasma lipid species associated with pain and/or pathology in a DMM model of OA
Bumble bee parasite strains vary in resistance to phytochemicals
Nectar and pollen contain diverse phytochemicals that can reduce disease in pollinators. However, prior studies showed variable effects of nectar chemicals on infection, which could reflect variable phytochemical resistance among parasite strains. Inter-strain variation in resistance could influence evolutionary interactions between plants, pollinators, and pollinator disease, but testing direct effects of phytochemicals on parasites requires elimination of variation between bees. Using cell cultures of the bumble bee parasite Crithidia bombi, we determined (1) growth-inhibiting effects of nine floral phytochemicals and (2) variation in phytochemical resistance among four parasite strains.
C. bombi growth was unaffected by naturally occurring concentrations of the known antitrypanosomal phenolics gallic acid, caffeic acid, and chlorogenic acid. However, C. bombi growth was inhibited by anabasine, eugenol, and thymol. Strains varied >3-fold in phytochemical resistance, suggesting that selection for phytochemical resistance could drive parasite evolution. Inhibitory concentrations of thymol (4.53-22.2 ppm) were similar to concentrations in Thymus vulgaris nectar (mean 5.2 ppm). Exposure of C. bombi to naturally occurring levels of phytochemicals—either within bees or during parasite transmission via flowers—could influence infection in nature. Flowers that produce antiparasitic phytochemical, including thymol, could potentially reduce infection in Bombus populations, thereby counteracting a possible contributor to pollinator decline
Plant-mediated effects on mosquito capacity to transmit human malaria
The ecological context in which mosquitoes and malaria parasites interact has received little attention, compared to the genetic and molecular aspects of malaria transmission. Plant nectar and fruits are important for the nutritional ecology of malaria vectors, but how the natural diversity of plant-derived sugar sources affects mosquito competence for malaria parasites is unclear. To test this, we infected Anopheles coluzzi, an important African malaria vector, with sympatric field isolates of Plasmodium falciparum, using direct membrane feeding assays. Through a series of experiments, we then examined the effects of sugar meals from Thevetia neriifolia and Barleria lupilina cuttings that included flowers, and fruit from Lannea microcarpa and Mangifera indica on parasite and mosquito traits that are key for determining the intensity of malaria transmission. We found that the source of plant sugar meal differentially affected infection prevalence and intensity, the development duration of the parasites, as well as the survival and fecundity of the vector. These effects are likely the result of complex interactions between toxic secondary metabolites and the nutritional quality of the plant sugar source, as well as of host resource availability and parasite growth. Using an epidemiological model, we show that plant sugar source can be a significant driver of malaria transmission dynamics, with some plant species exhibiting either transmission-reducing or -enhancing activities
Recommended from our members
Phylogeny, morphology, virulence, ecology, and host range of Ordospora pajunii (Ordosporidae), a microsporidian symbiont of Daphnia spp.
The impacts of microsporidia on host individuals are frequently subtle and can be context dependent. A key example of the latter comes from a recently discovered microsporidian symbiont of Daphnia, the net impact of which was found to shift from negative to positive based on environmental context. Given this, we hypothesized low baseline virulence of the microsporidian; here, we investigated the impact of infection on hosts in controlled conditions and the absence of other stressors. We also investigated its phylogenetic position, ecology, and host range. The genetic data indicate that the symbiont is Ordospora pajunii, a newly described microsporidian parasite of Daphnia. We show that O. pajunii infection damages the gut, causing infected epithelial cells to lose microvilli and then rupture. The prevalence of this microsporidian could be high (up to 100% in the lab and 77% of adults in the field). Its overall virulence was low in most cases, but some genotypes suffered reduced survival and/or reproduction. Susceptibility and virulence were strongly host-genotype dependent. We found that North American O. pajunii were able to infect multiple Daphnia species, including the European species Daphnia longispina, as well as Ceriodaphnia spp. Given the low, often undetectable virulence of this microsporidian and potentially far-reaching consequences of infections for the host when interacting with other pathogens or food, this Daphnia-O. pajunii symbiosis emerges as a valuable system for studying the mechanisms of context-dependent shifts between mutualism and parasitism, as well as for understanding how symbionts might alter host interactions with resources.ImportanceThe net outcome of symbiosis depends on the costs and benefits to each partner. Those can be context dependent, driving the potential for an interaction to change between parasitism and mutualism. Understanding the baseline fitness impact in an interaction can help us understand those shifts; for an organism that is generally parasitic, it should be easier for it to become a mutualist if its baseline virulence is relatively low. Recently, a microsporidian was found to become beneficial to its Daphnia hosts in certain ecological contexts, but little was known about the symbiont (including its species identity). Here, we identify it as the microsporidium Ordospora pajunii. Despite the parasitic nature of microsporidia, we found O. pajunii to be, at most, mildly virulent; this helps explain why it can shift toward mutualism in certain ecological contexts and helps establish O. pajunii is a valuable model for investigating shifts along the mutualism-parasitism continuum
Clinical and Preclinical Evidence for Roles of Soluble Epoxide Hydrolase in Osteoarthritis Knee Pain
Objective: Chronic pain due to osteoarthritis (OA) is a major clinical problem, and existing analgesics often have limited beneficial effects and/or adverse effects, necessitating the development of novel therapies. Epoxyeicosatrienoic acids (EETs) are endogenous antiinflammatory mediators, rapidly metabolized by soluble epoxide hydrolase (EH) to dihydroxyeicosatrienoic acids (DHETs). We undertook this study to assess whether soluble EH–driven metabolism of EETs to DHETs plays a critical role in chronic joint pain associated with OA and provides a new target for treatment. Methods: Potential associations of chronic knee pain with single-nucleotide polymorphisms (SNPs) in the gene-encoding soluble EH and with circulating levels of EETs and DHETs were investigated in human subjects. A surgically induced murine model of OA was used to determine the effects of both acute and chronic selective inhibition of soluble EH by N-[1-(1-oxopropy)-4-piperidinyl]-N′-(trifluoromethoxy)phenyl]-urea (TPPU) on weight-bearing asymmetry, hind paw withdrawal thresholds, joint histology, and circulating concentrations of EETs and DHETs. Results: In human subjects with chronic knee pain, 3 pain measures were associated with SNPs of the soluble EH gene EPHX2, and in 2 separate cohorts of subjects, circulating levels of EETs and DHETs were also associated with 3 pain measures. In the murine OA model, systemic administration of TPPU both acutely and chronically reversed established pain behaviors and decreased circulating levels of 8,9-DHET and 14,15-DHET. EET levels were unchanged by TPPU administration. Conclusion: Our novel findings support a role of soluble EH in OA pain and suggest that inhibition of soluble EH and protection of endogenous EETs from catabolism represents a potential new therapeutic target for OA pain
For management?
Over the past decades there have been persistent radical critiques of management. Previously the goal was to apply forms of Marxian analysis to the world of management and organizations, usually seeing it as a sphere of false consciousness, distorted and unreflective practices, and three-dimensional power or hegemony. Surprisingly, even after the Marxist scaffoldings that supported such claims have been deconstructed - both practically and theoretically - there are still current contributions to management thought that seek to resuscitate the same critiques, often under the rubric of Critical Management Studies. These representations seem increasingly bizarre, given the theoretical currents emanating from post-structuralist and postmodern thought that have been emergent in recent years, associated ideas such as polyphony, difference, deconstruction and translation. In this article we draw on these sources to produce a different representation of management - one that we would argue acts as an effective counter-factual to that which provides support to some of the central tendencies manifest in critical approaches to management. Rather than seeing modern management as necessarily a totalitarian practice, one that should necessarily be subject to a negative critique, we would argue that, at its best, it enables polyphony rather than tyranny, and the possibility to be both critical and for management. Copyright © 2006 Sage Puplications
ABSENCE, OVERTIME AND THE STRUCTURE OF THE PAY PACKET: SOME METHODOLOGICAL POINTS. PART II
The Question of John the Baptist and Jesus' Indictment of the Religious Leaders: A Critical Analysis of Luke 7:18-35. By ROBERTO MARTINEZ.
- …
