376 research outputs found

    Raman scattering through surfaces having biaxial symmetry

    Full text link
    Magnetic Raman scattering in two-leg spin ladder materials and the relationship between the anisotropic exchange integrals are analyzed by P. J. Freitas and R. R. P. Singh in Phys. Rev. B, {\bf 62}, 14113 (2000). The angular dependence of the two-magnon scattering is shown to provide information for the magnetic anisotropy in the Sr_14Cu_24O_41 and La_6Ca_8Cu_24O_41 compounds. We point out that the experimental results of polarized Raman measurements at arbitrary angles with respect to the crystal axes have to be corrected for the light ellipticity induced inside the optically anisotropic crystals. We refer quantitatively to the case of Sr_14Cu_24O_41 and discuss potential implications for spectroscopic studies in other materials with strong anisotropy.Comment: To be published as a Comment in Phys. Rev.

    Sliding Density-Wave in Sr_{14}Cu_{24}O_{41} Ladder Compounds

    Full text link
    We used transport and Raman scattering measurements to identify the insulating state of self-doped spin 1/2 two-leg ladders of Sr_{14}Cu_{24}O_{41} as a weakly pinned, sliding density wave with non-linear conductivity and a giant dielectric response that persists to remarkably high temperatures

    Derivation of the generalized Non Linear Sigma Model in the presence of the Dzyaloshinskii-Moriya interaction

    Full text link
    We derive the long-wavelength non-linear sigma model for a two-dimensional Heisenberg system in the presence of the Dzyaloshinskii-Moriya and pseudodipolar interactions. We show that the system is a non-conventional easy-axis antiferromagnet, displaying an anomalous coupling between the magnetic field and the staggered order parameter. Our results are in good agreement with recent experimental data for undoped La2CuO4 compounds.Comment: Proceedings of SCES05, to appear on Physica

    Resonant two-magnon Raman scattering in two-dimensional and ladder-type Mott insulators

    Full text link
    We investigate the resonant two-magnon Raman scattering in the two-dimensional (2D) and ladder-type Mott insulators by using a half-filled Hubbard model in the strong coupling limit. By performing numerical diagonalization calculations for small clusters, we find that the model can reproduce the experimental features in the 2D that the Raman intensity is enhanced when the incoming photon energy is not near the absorption edge but well above it. In the ladder-type Mott insulators, the Raman intensity is found to resonate with absorption spectrum in contrast to the 2D system. The difference between 2D and the ladder systems is explained by taking into account the fact that the ground state in 2D is a spin-ordered state while that in ladder is a spin-gapped one.Comment: REVTeX4, 3 pages, 3 figures, Proceedings for ISS2002 (Yokohama, November 2002). To be published in Physica

    Magnetic order in lightly doped La_{2-x}Sr_{x}CuO_{4}

    Full text link
    We study long wavelength magnetic excitations in lightly doped La_{2-x}Sr_{x}CuO_{4} (x < 0.03) detwinned crystals. The lowest energy magnetic anisotropy induced gap can be understood in terms of the antisymmetric spin interaction inside the antiferromagnetic (AF) phase. The second magnetic resonace, analyzed in terms of in-plane spin anisotropy, shows unconventional behavior within the AF state and led to the discovery of collective spin excitations pertaining to a field induced magnetically ordered state. This state persists in a 9 T field to more than 100 K above the N\'{e}el temperature in x = 0.01.Comment: 5 pages, 5 figure

    First-Order Type Effects in YBa2_2Cu3_3O6+x_{6+x} at the Onset of Superconductivity

    Full text link
    We present results of Raman scattering experiments on tetragonal (Y1yCay)Ba2Cu3O6+x{\rm (Y_{1-y}Ca_{y})Ba_{2}Cu_{3}O_{6+x}} for doping levels p(x,y)p(x,y) between 0 and 0.07 holes/CuO2_2. Below the onset of superconductivity at psc10.06p_{\rm sc1} \approx 0.06, we find evidence of a diagonal superstructure. At psc1p_{\rm sc1}, lattice and electron dynamics change discontinuously with the charge and spin properties being renormalized at all energy scales. The results indicate that charge ordering is intimately related to the transition at psc1p_{\rm sc1} and that the maximal transition temperature to superconductivity at optimal doping TcmaxT_{c}^{\rm max} depends on the type of ordering at p>psc1p>p_{\rm sc1}.Comment: 4 pages, 4 figure

    Crystal structure and high-field magnetism of La2CuO4

    Get PDF
    Neutron diffraction was used to determine the crystal structure and magnetic ordering pattern of a La2CuO4 single crystal, with and without applied magnetic field. A previously unreported, subtle monoclinic distortion of the crystal structure away from the orthorhombic space group Bmab was detected. The distortion is also present in lightly Sr-doped crystals. A refinement of the crystal structure shows that the deviation from orthorhombic symmetry is predominantly determined by displacements of the apical oxygen atoms. An in-plane magnetic field is observed to drive a continuous reorientation of the copper spins from the orthorhombic b-axis to the c-axis, directly confirming predictions based on prior magnetoresistance and Raman scattering experiments. A spin-flop transition induced by a c-axis oriented field previously reported for non-stoichiometric La2CuO4 is also observed, but the transition field (11.5 T) is significantly larger than that in the previous work

    Inhomogeneous CuO_{6} Tilt Distribution and Charge/Spin Correlations in La_{2-x-y}Nd_{y}Sr_{x}CuO$_{4} around commensurate hole concentration

    Full text link
    Phononic and magnetic Raman scattering are studied in La2xy_{2-x-y}Ndy_{y}Srx_{x}CuO4_{4} with three doping concentrations: x ~ 1/8, y = 0; x ~ 1/8, y = 0.4; and x = 0.01, y = 0. We observe strong disorder in the tilt pattern of the CuO_{6} octahedra in both the orthorhombic and tetragonal phases which persist down to 10 K and are coupled to bond disorder in the cation layers around 1/8 doping independent of Nd concentration. The weak magnitude of existing charge/spin modulations in the Nd doped structure does not allow us to detect the specific Raman signatures on lattice dynamics or two-magnon scattering around 2200 cm-1.Comment: to be published in Phys. Rev.

    Charge collective modes in an incommensurately modulated cuprate

    Get PDF
    We report the first measurement of collective charge modes of insulating Sr14Cu24O41 using inelastic resonant x-ray scattering over the complete Brillouin zone. Our results show that the intense excitation modes at the charge gap edge predominantly originate from the ladder-containing planar substructures. The observed ladder modes (E vs. Q) are found to be dispersive for momentum transfers along the "legs" but nearly localized along the "rungs". Dispersion and peakwidth characteristics are similar to the charge spectrum of 1D Mott insulators, and we show that our results can be understood in the strong coupling limit (U >> t_{ladder}> t_{chain}). The observed behavior is in marked contrast to the charge spectrum seen in most two dimensional cuprates. Quite generally, our results also show that momentum-tunability of inelastic scattering can be used to resolve mode contributions in multi-component incommensurate systems.Comment: 4+ pages, 5 figure
    corecore