8,867 research outputs found

    Structure of the conservation laws in integrable spin chains with short range interactions

    Get PDF
    We present a detailed analysis of the structure of the conservation laws in quantum integrable chains of the XYZ-type and in the Hubbard model. With the use of the boost operator, we establish the general form of the XYZ conserved charges in terms of simple polynomials in spin variables and derive recursion relations for the relative coefficients of these polynomials. For two submodels of the XYZ chain - namely the XXX and XY cases, all the charges can be calculated in closed form. For the XXX case, a simple description of conserved charges is found in terms of a Catalan tree. This construction is generalized for the su(M) invariant integrable chain. We also indicate that a quantum recursive (ladder) operator can be traced back to the presence of a hamiltonian mastersymmetry of degree one in the classical continuous version of the model. We show that in the quantum continuous limits of the XYZ model, the ladder property of the boost operator disappears. For the Hubbard model we demonstrate the non-existence of a ladder operator. Nevertheless, the general structure of the conserved charges is indicated, and the expression for the terms linear in the model's free parameter for all charges is derived in closed form.Comment: 79 pages in plain TeX plus 4 uuencoded figures; (uses harvmac and epsf

    Theory for Superconducting Properties of the Cuprates: Doping Dependence of the Electronic Excitations and Shadow States

    Full text link
    The superconducting phase of the 2D one-band Hubbard model is studied within the FLEX approximation and by using an Eliashberg theory. We investigate the doping dependence of TcT_c, of the gap function Δ(k,ω)\Delta ({\bf k},\omega) and of the effective pairing interaction. Thus we find that TcT_c becomes maximal for 13  %13 \; \% doping. In {\it overdoped} systems TcT_c decreases due to the weakening of the antiferromagnetic correlations, while in the {\it underdoped} systems due to the decreasing quasi particle lifetimes. Furthermore, we find {\it shadow states} below TcT_c which affect the electronic excitation spectrum and lead to fine structure in photoemission experiments.Comment: 10 pages (REVTeX) with 5 figures (Postscript

    Fault-Tolerance by Graceful Degradation for Car Platoons

    Get PDF
    The key advantage of autonomous car platoons are their short inter-vehicle distances that increase traffic flow and reduce fuel consumption. However, this is challenging for operational and functional safety. If a failure occurs, the affected vehicles cannot suddenly stop driving but instead should continue their operation with reduced performance until a safe state can be reached or, in the case of temporal failures, full functionality can be guaranteed again. To achieve this degradation, platoon members have to be able to compensate sensor and communication failures and have to adjust their inter-vehicle distances to ensure safety. In this work, we describe a systematic design of degradation cascades for sensor and communication failures in autonomous car platoons using the example of an autonomous model car. We describe our systematic design method, the resulting degradation modes, and formulate contracts for each degradation level. We model and test our resulting degradation controller in Simulink/Stateflow

    The Structure of Conserved Charges in Open Spin Chains

    Get PDF
    We study the local conserved charges in integrable spin chains of the XYZ type with nontrivial boundary conditions. The general structure of these charges consists of a bulk part, whose density is identical to that of a periodic chain, and a boundary part. In contrast with the periodic case, only charges corresponding to interactions of even number of spins exist for the open chain. Hence, there are half as many charges in the open case as in the closed case. For the open spin-1/2 XY chain, we derive the explicit expressions of all the charges. For the open spin-1/2 XXX chain, several lowest order charges are presented and a general method of obtaining the boundary terms is indicated. In contrast with the closed case, the XXX charges cannot be described in terms of a Catalan tree pattern.Comment: 22 pages, harvmac.tex (minor clarifications and reference corrections added

    Quantum chains with a Catalan tree pattern of conserved charges: the Δ=1\Delta = -1 XXZ model and the isotropic octonionic chain

    Get PDF
    A class of quantum chains possessing a family of local conserved charges with a Catalan tree pattern is studied. Recently, we have identified such a structure in the integrable SU(N)SU(N)-invariant chains. In the present work we find sufficient conditions for the existence of a family of charges with this structure in terms of the underlying algebra. Two additional systems with a Catalan tree structure of conserved charges are found. One is the spin 1/2 XXZ model with Δ=1\Delta=-1. The other is a new octonionic isotropic chain, generalizing the Heisenberg model. This system provides an interesting example of an infinite family of noncommuting local conserved quantities.Comment: 20 pages in plain TeX; uses macro harvma

    Modular classes of skew algebroid relations

    Full text link
    Skew algebroid is a natural generalization of the concept of Lie algebroid. In this paper, for a skew algebroid E, its modular class mod(E) is defined in the classical as well as in the supergeometric formulation. It is proved that there is a homogeneous nowhere-vanishing 1-density on E* which is invariant with respect to all Hamiltonian vector fields if and only if E is modular, i.e. mod(E)=0. Further, relative modular class of a subalgebroid is introduced and studied together with its application to holonomy, as well as modular class of a skew algebroid relation. These notions provide, in particular, a unified approach to the concepts of a modular class of a Lie algebroid morphism and that of a Poisson map.Comment: 20 page

    On Jacobi quasi-Nijenhuis algebroids and Courant-Jacobi algebroid morphisms

    Full text link
    We propose a definition of Jacobi quasi-Nijenhuis algebroid and show that any such Jacobi algebroid has an associated quasi-Jacobi bialgebroid. Therefore, also an associated Courant-Jacobi algebroid is obtained. We introduce the notions of quasi-Jacobi bialgebroid morphism and Courant-Jacobi algebroid morphism providing also some examples of Courant-Jacobi algebroid morphisms.Comment: 14 pages, to appear in Journal of Geometry and Physic

    Integration of Dirac-Jacobi structures

    Full text link
    We study precontact groupoids whose infinitesimal counterparts are Dirac-Jacobi structures. These geometric objects generalize contact groupoids. We also explain the relationship between precontact groupoids and homogeneous presymplectic groupoids. Finally, we present some examples of precontact groupoids.Comment: 10 pages. Brief changes in the introduction. References update

    Jacobi-Nijenhuis algebroids and their modular classes

    Get PDF
    Jacobi-Nijenhuis algebroids are defined as a natural generalization of Poisson-Nijenhuis algebroids, in the case where there exists a Nijenhuis operator on a Jacobi algebroid which is compatible with it. We study modular classes of Jacobi and Jacobi-Nijenhuis algebroids
    corecore