30 research outputs found
Modeling of beam-induced damage of the LHC tertiary collimators
Modern hadron machines with high beam intensity may suffer from material damage in the case of large beam losses and even beam-intercepting devices, such as collimators, can be harmed. A systematic method to evaluate thresholds of damage owing to the impact of high energy particles is therefore crucial for safe operation and for predicting possible limitations in the overall machine performance. For this, a three-step simulation approach is presented, based on tracking simulations followed by calculations of energy deposited in the impacted material and hydrodynamic simulations to predict the thermomechanical effect of the impact. This approach is applied to metallic collimators at the CERN Large Hadron Collider (LHC), which in standard operation intercept halo protons, but risk to be damaged in the case of extraction kicker malfunction. In particular, tertiary collimators protect the aperture bottlenecks, their settings constrain the reach in β^{*} and hence the achievable luminosity at the LHC experiments. Our calculated damage levels provide a very important input on how close to the beam these collimators can be operated without risk of damage. The results of this approach have been used already to push further the performance of the present machine. The risk of damage is even higher in the upgraded high-luminosity LHC with higher beam intensity, for which we quantify existing margins before equipment damage for the proposed baseline settings
Design, construction, and beam tests of a rotatable collimator prototype for high-intensity and high-energy hadron accelerators
A rotatable-jaw collimator design was conceived as a solution to recover from catastrophic beam impacts which would damage a collimator at the Large Hadron Collider (LHC) or its High-Luminosity upgrade (HL-LHC). One such rotatable collimator prototype was designed and built at SLAC and delivered to CERN for tests with LHC-type circulating beams in the Super Proton Synchrotron (SPS). This was followed by destructive tests at the dedicated High Radiation to Materials (HiRadMat) facility to validate the design and rotation functionality. An overview of the collimator design, together with results from tests without and with beam are presented
Construction and bench testing of a prototype rotatable collimator for the LHC
A second generation prototype rotatable collimator has been fabricated at SLAC and delivered to CERN for further vacuum, metrology, function and impedance tests. The design features two cylindrical Glidcop jaws designed to each absorb 12 kW of beam in steady state and up to 60 kW in transitory beam loss with no damage and minimal thermal distortion [1]. The design is motivated by the use of a radiation resistant high Z low impedance readily available material. A vacuum rotation mechanism using the standard LHC collimation jaw positioning motor system allows each jaw to be rotated to present a new 2 cm high surface to the beam if the jaw surface were to be damaged by multiple full intensity beam bunch impacts in a asynchronous beam abort. Design modifications to improve on the first generation prototype, pre-delivery functional tests performed at SLAC and post-delivery test results at CERN are presented.ALBA-CELLS,American Physical Society Division of Physics of Beams (APS-DPB),Asian Committee for Future Accelerators (ACFA),ASTeC/STFC,Centro Fermi,et al.peer-reviewe
Innovative MoC - Graphite composite for thermal management and thermal shock applications
Innovative collimators are being investigated to handle the high energy particle beams foreseen in future upgrades of CERN Large Hadron Collider (LHC). This calls for the development of novel advanced materials, as no existing metal- or carbon-based material possesses the combination of physical, thermal, electrical and mechanical properties, imposed by extreme collimator's working conditions. An ambitious research program has been undertaken at CERN and collaborating partners to investigate, process and characterize novel composite materials. A promising new family of materials has been identified in metal/ceramiccarbon composites: these are intended to combine optimum mechanical, thermal and electrical properties, such as mechanical strength, melting temperature, thermal shock resistance, electrical conductivity, and energy absorption. Besides High Energy Physics equipment, these materials are of particular interest for thermal management applications such as high power density electronic packaging, aerospace, automotive, nuclear fusion and solar energy. With that in mind, this paper aims at discussing the properties of investigated materials with respect to their relevance for the various application domains
Updated Simulation Studies of Damage Limit of LHC Tertiary Collimators
The tertiary collimators (TCTs) in the LHC, installed in front of the experiments, in standard operation intercept fractions of 10−3 halo particles. However, they risk to be hit by high-intensity primary beams in case of asynchronous beam dump. TCT damage thresholds were initially inferred from results of destructive tests on a TCT jaw, supported by numerical simulations, assuming simplified impact scenarios with one single bunch hitting the jaw with a given impact parameter. In this paper, more realistic failure conditions, including a train of bunches and taking into account the full collimation hierarchy, are used to derive updated damage limits. The results are used to update the margins in the collimation hierarchy and could thus potentially have an influence on the LHC performance
Attenuated Salmonella enterica serovar Typhimurium lacking the ZnuABC transporter: An efficacious orally-administered mucosal vaccine against salmonellosis in pigs
We have recently demonstrated that an attenuated strain of Salmonella enterica serovar Typhimurium unable to synthesize the zinc transporter ZnuABC (S. Typhimurium ΔznuABC), is able to protect mice against systemic and enteric salmonellosis and is safe in pigs. Here, we have tested the protective effects of S. Typhimurium ΔznuABC in pigs. Resistance to challenge with the fully virulent strain S. Typhimurium ATCC 14028 was assessed in animals vaccinated with S. Typhimurium ΔznuABC (two dosages tested), in controls vaccinated with a formalin-inactivated virulent strain and in unvaccinated controls. Clinical signs of salmonellosis, faecal shedding and bacterial colonization of organs were used to assess vaccine-induced protection. After the challenge, pigs vaccinated with the attenuated S. Typhimurium ΔznuABC strain did not display clinical signs of salmonellosis (fever or diarrhoea). The vaccine also reduced intestinal tract colonization and faecal shedding of the fully virulent Salmonella strain, as compared to control groups. S. Typhimurium ΔznuABC represents a promising candidate vaccine against salmonellosis in pigs
