4,159 research outputs found
Powder Bed Fusion Additive Manufacturing of JBK-75
JBK-75 is an iron-nickel derivative alloy of A-286 that has been of interest to NASAs propulsion community for use in fuel injectors and other components that are used in hot, corrosive environments. To enable the rapid production of these components in JBK-75, Marshall Space Flight Center has developed parameters for manufacturing fully dense JBK-75 components using powder bed fusion additive manufacturing (PBFAM). These parameters were developed in a two-step development. First, the depth of laser penetration in the powdered material was measured across a spectrum of laser powers to determine the optimal power necessary for generating the desired meltpool depth. The parameter sets vector-to-vector spacing was then then tailored to guarantee the full densification of the desired area. The results of this development was a readily implementable parameter that produced 99.6% dense material when using a 147W power running at 600mm/s with a 85m(32%) vector-to-vector spacing
Hole spin dynamics and hole factor anisotropy in coupled quantum well systems
Due to its p-like character, the valence band in GaAs-based heterostructures
offers rich and complex spin-dependent phenomena. One manifestation is the
large anisotropy of Zeeman spin splitting. Using undoped, coupled quantum wells
(QWs), we examine this anisotropy by comparing the hole spin dynamics for high-
and low-symmetry crystallographic orientations of the QWs. We directly measure
the hole factor via time-resolved Kerr rotation, and for the low-symmetry
crystallographic orientations (110) and (113a), we observe a large in-plane
anisotropy of the hole factor, in good agreement with our theoretical
calculations. Using resonant spin amplification, we also observe an anisotropy
of the hole spin dephasing in the (110)-grown structure, indicating that
crystal symmetry may be used to control hole spin dynamics
Design and Fabrication Development of J-2X Engine Metallic Nozzle Extension
Maximized rocket engine performance is in part derived from expanding combustion gasses through the rocket nozzle. For upper stage engines the nozzles can be quite large. On the J-2X engine, an uncooled extension of a regeneratively cooled nozzle is used to expand the combustion gasses to a targeted exit pressure which is defined by an altitude for the desired maximum performance. Creating a J-2X nozzle extension capable of surviving the loads of test and flight environments while meeting engine system performance requirements required development of new processes and facilities. Meeting the challenges of the development resulted in concurrent J-2X nozzle extension design and fabrication. This paper describes how some of the design and fabrication challenges were resolved
Studies of aging and HV break down problems during development and operation of MSGC and GEM detectors for the Inner Tracking System of HERA-B
The results of five years of development of the inner tracking system of the
HERA-B experiment and first experience from the data taking period of the year
2000 are reported. The system contains 184 chambers, covering a sensitive area
of about 20 * 20 cm2 each. The detector is based on microstrip gas counters
(MSGCs) with diamond like coated (DLC) glass wafers and gas electron
multipliers (GEMs). The main problems in the development phase were gas
discharges in intense hadron beams and aging in a high radiation dose
environment. The observation of gas discharges which damage the electrode
structure of the MSGC led to the addition of the GEM as a first amplification
step. Spurious sparking at the GEM cannot be avoided completely. It does not
affect the GEM itself but can produce secondary damage of the MSGC if the
electric field between the GEM and the MSGC is above a threshold depending on
operation conditions. We observed that aging does not only depend on the dose
but also on the spot size of the irradiated area. Ar-DME mixtures had to be
abandoned whereas a mixture of 70% Ar and 30% CO2 showed no serious aging
effects up to about 40 mC/cm deposited charge on the anodes. X-ray measurements
indicate that the DLC of the MSGC is deteriorated by the gas amplification
process. As a consequence, long term gain variations are expected. The Inner
Tracker has successfully participated in the data taking at HERA-B during
summer 2000.Comment: 29 pages, 22 figure
Spin dynamics in p-doped semiconductor nanostructures subject to a magnetic field tilted from the Voigt geometry
We develop a theoretical description of the spin dynamics of resident holes
in a p-doped semiconductor quantum well (QW) subject to a magnetic field tilted
from the Voigt geometry. We find the expressions for the signals measured in
time-resolved Faraday rotation (TRFR) and resonant spin amplification (RSA)
experiments and study their behavior for a range of system parameters. We find
that an inversion of the RSA peaks can occur for long hole spin dephasing times
and tilted magnetic fields. We verify the validity of our theoretical findings
by performing a series of TRFR and RSA experiments on a p-modulation doped
GaAs/Al_{0.3}Ga_{0.7}As single QW and showing that our model can reproduce
experimentally observed signals.Comment: 9 pages, 3 figures; corrected typo
Light Meson Dynamics Workshop. Mini proceedings
The mini-proceedings of the Light Meson Dynamics Workshop held in Mainz from
February 10th to 12th, 2014, are presented. The web page of the conference,
which contains all talks, can be found at
https://indico.cern.ch/event/287442/overview .Comment: 46 pages, 17 contributions. Editors: W. Gradl, P. Masjuan, M.
Ostrick, and S. Schere
Issues and Opportunities in Exotic Hadrons
The last few years have been witness to a proliferation of new results
concerning heavy exotic hadrons. Experimentally, many new signals have been
discovered that could be pointing towards the existence of tetraquarks,
pentaquarks, and other exotic configurations of quarks and gluons.
Theoretically, advances in lattice field theory techniques place us at the cusp
of understanding complex coupled-channel phenomena, modelling grows more
sophisticated, and effective field theories are being applied to an ever
greater range of situations. It is thus an opportune time to evaluate the
status of the field. In the following, a series of high priority experimental
and theoretical issues concerning heavy exotic hadrons is presented.Comment: White paper from INT workshop, "Modern Exotic Hadrons". References
added. Version to appear in Chinese Physics
Molecular dissection of Wnt3a-Frizzled8 interaction reveals essential and modulatory determinants of Wnt signaling activity
Background: Wnt proteins are a family of secreted signaling molecules that regulate key developmental processes in metazoans. The molecular basis of Wnt binding to Frizzled and LRP5/6 co-receptors has long been unknown due to the lack of structural data on Wnt ligands. Only recently, the crystal structure of the Wnt8-Frizzled8-cysteine-rich-domain (CRD) complex was solved, but the significance of interaction sites that influence Wnt signaling has not been assessed. Results: Here, we present an extensive structure-function analysis of mouse Wnt3a in vitro and in vivo. We provide evidence for the essential role of serine 209, glycine 210 (site 1) and tryptophan 333 (site 2) in Fz binding. Importantly, we discovered that valine 337 in the site 2 binding loop is critical for signaling without contributing to binding. Mutations in the presumptive second CRD binding site (site 3) partly abolished Wnt binding. Intriguingly, most site 3 mutations increased Wnt signaling, probably by inhibiting Wnt-CRD oligomerization. In accordance, increasing amounts of soluble Frizzled8-CRD protein modulated Wnt3a signaling in a biphasic manner. Conclusions: We propose a concentration-dependent switch in Wnt-CRD complex formation from an inactive aggregation state to an activated high mobility state as a possible modulatory mechanism in Wnt signaling gradients
Open and Hidden Charm Production in 920 GeV Proton-Nucleus Collisions
The HERA-B collaboration has studied the production of charmonium and open
charm states in collisions of 920 GeV protons with wire targets of different
materials. The acceptance of the HERA-B spectrometer covers negative values of
xF up to xF=-0.3 and a broad range in transverse momentum from 0.0 to 4.8
GeV/c. The studies presented in this paper include J/psi differential
distributions and the suppression of J/psi production in nuclear media.
Furthermore, production cross sections and cross section ratios for open charm
mesons are discussed.Comment: 5 pages, 9 figures, to be published in the proceedings of the 6th
International Conference on Hyperons, Charm & Beauty Hadrons (BEACH04),
Chicago, IL, June 27 - July 3, 200
Measurement of pi^0 photoproduction on the proton at MAMI C
Differential cross sections for the gamma p -> pi^0 p reaction have been
measured with the A2 tagged-photon facilities at the Mainz Microtron, MAMI C,
up to the center-of-mass energy W=1.9 GeV. The new results, obtained with a
fine energy and angular binning, increase the existing quantity of pi^0
photoproduction data by ~47%. Owing to the unprecedented statistical accuracy
and the full angular coverage, the results are sensitive to high partial-wave
amplitudes. This is demonstrated by the decomposition of the differential cross
sections in terms of Legendre polynomials and by further comparison to model
predictions. A new solution of the SAID partial-wave analysis obtained after
adding the new data into the fit is presented.Comment: 13 pages, 12 figures, 1 tabl
- …
