1,166 research outputs found
Shape of Deconstruction
We construct a six-dimensional Maxwell theory using a latticized extra space,
the continuum limit of which is a shifted torus recently discussed by Dienes.
This toy model exhibits the correspondence between continuum theory and
discrete theory, and give a geometrical insight to theory-space model building.Comment: 10 pages, 2 figures, RevTeX4. a citation adde
Interaction of Kelvin waves and nonlocality of energy transfer in superfluids
We argue that the physics of interacting Kelvin Waves (KWs) is highly nontrivial and cannot be understood on the basis of pure dimensional reasoning. A consistent theory of KW turbulence in superfluids should be based upon explicit knowledge of their interactions. To achieve this, we present a detailed calculation and comprehensive analysis of the interaction coefficients for KW turbuelence, thereby, resolving previous mistakes stemming from unaccounted contributions. As a first application of this analysis, we derive a local nonlinear (partial differential) equation. This equation is much simpler for analysis and numerical simulations of KWs than the Biot-Savart equation, and in contrast to the completely integrable local induction approximation (in which the energy exchange between KWs is absent), describes the nonlinear dynamics of KWs. Second, we show that the previously suggested Kozik-Svistunov energy spectrum for KWs, which has often been used in the analysis of experimental and numerical data in superfluid turbulence, is irrelevant, because it is based upon an erroneous assumption of the locality of the energy transfer through scales. Moreover, we demonstrate the weak nonlocality of the inverse cascade spectrum with a constant particle-number flux and find resulting logarithmic corrections to this spectrum
New and interesting records of Brazilian bryophytes
This paper presents data on morphology, ecology and distribution of 16 species of bryophytes collected in Pernambuco, Brazil, that are interesting floristic records. Notothylasorbicularis (Schwein.) Sull. is new to Brazil, 11 species are new to the Northeast region of Brazil and 4 species are new to Pernambuco.Dados morfológicos, ecológicos e de distribuição geográfica são apresentados para 16 espécies de briófitas coletadas no Estado de Pernambuco, Brasil. Notothylas orbicularis (Schwein.) Sull. é registrada pela primeira vez para o Brasil, 11 espécies são novas para a região Nordeste e 4 para o Estado de Pernambuco
Electronic structure of unidirectional superlattices in crossed electric and magnetic fields and related terahertz oscillations
We have studied Bloch electrons in a perfect unidirectional superlattice
subject to crossed electric and magnetic fields, where the magnetic field is
oriented ``in-plane'', i.e. in parallel to the sample plane. Two orientation of
the electric field are considered. It is shown that the magnetic field
suppresses the intersubband tunneling of the Zener type, but does not change
the frequency of Bloch oscillations, if the electric field is oriented
perpendicularly to both the sample plane and the magnetic field. The electric
field applied in-plane (but perpendicularly to the magnetic field) yields the
step-like electron energy spectrum, corresponding to the magnetic-field-tunable
oscillations alternative to the Bloch ones.Comment: 7 pages, 1 figure, accepted for publication in Phys. Rev.
Soft interaction model and the LHC data
Most models for soft interactions which were proposed prior to the
measurements at the LHC, are only marginally compatible with LHC data, our GLM
model has the same deficiency. In this paper we investigate possible causes of
the problem, by considering separate fits to the high energy (),
and low energy () data. Our new results are moderately higher
than our previous predictions. Our results for total and elastic cross sections
are systematically lower that the recent Totem and Alice published values,
while our results for the inelastic and forward slope agree with the data. If
with additional experimental data, the errors are reduced, while the central
cross section values remain unchanged, we will need to reconsider the physics
on which our model is built.Comment: 12 pp, 12 figures in .eps file
Local Geometry of the Fermi Surface and Magnetoacoustic Responce of Two-Dimensional Electron Systems in Strong Magnetic Fields
A semiclassical theory for magnetotrasport in a quantum Hall system near
filling factor based on the Composite Fermions physical picture is
used to analyze the effect of local flattening of the Composite Fermion Fermi
surface (CF-FS) upon magnetoacoustic oscllations. We report on calculations of
the velocity shift and attenuation of a surface acoustic wave (SAW) which
travels above the two-dimensional electron system, and we show that local
geometry of the CF-FS could give rise to noticeable changes in the magnitude
and phase of the oscillations. We predict these changes to be revealed in
experiments, and to be used in further studies of the shape and symmetries of
the CF-FS. Main conclusions reported here could be applied to analyze
magnetotransport in quantum Hall systems at higher filling factors provided the Fermi-liquid-like state of the system.Comment: 7 pages, 2 figure
Nonlinear Screening and Effective Electrostatic Interactions in Charge-Stabilized Colloidal Suspensions
A nonlinear response theory is developed and applied to electrostatic
interactions between spherical macroions, screened by surrounding microions, in
charge-stabilized colloidal suspensions. The theory describes leading-order
nonlinear response of the microions (counterions, salt ions) to the
electrostatic potential of the macroions and predicts microion-induced
effective many-body interactions between macroions. A linear response
approximation [Phys. Rev. E 62, 3855 (2000)] yields an effective pair potential
of screened-Coulomb (Yukawa) form, as well as a one-body volume energy, which
contributes to the free energy. Nonlinear response generates effective
many-body interactions and essential corrections to both the effective pair
potential and the volume energy. By adopting a random-phase approximation (RPA)
for the response functions, and thus neglecting microion correlations,
practical expressions are derived for the effective pair and triplet potentials
and for the volume energy. Nonlinear screening is found to weaken repulsive
pair interactions, induce attractive triplet interactions, and modify the
volume energy. Numerical results for monovalent microions are in good agreement
with available ab initio simulation data and demonstrate that nonlinear effects
grow with increasing macroion charge and concentration and with decreasing salt
concentration. In the dilute limit of zero macroion concentration,
leading-order nonlinear corrections vanish. Finally, it is shown that nonlinear
response theory, when combined with the RPA, is formally equivalent to the
mean-field Poisson-Boltzmann theory and that the linear response approximation
corresponds, within integral-equation theory, to a linearized hypernetted-chain
closure.Comment: 30 pages, 8 figures, Phys. Rev. E (in press
Phase Diffusion in Quantum Dissipative Systems
We study the dynamics of the quantum phase distribution associated with the
reduced density matrix of a system for a number of situations of practical
importance, as the system evolves under the influence of its environment,
interacting via a quantum nondemoliton type of coupling, such that there is
decoherence without dissipation, as well as when it interacts via a dissipative
interaction, resulting in decoherence as well as dissipation. The system is
taken to be either a two-level atom (or equivalently, a spin-1/2 system) or a
harmonic oscillator, and the environment is modeled as a bath of harmonic
oscillators, starting out in a squeezed thermal state. The impact of the
different environmental parameters on the dynamics of the quantum phase
distribution for the system starting out in various initial states, is
explicitly brought out. An interesting feature that emerges from our work is
that the relationship between squeezing and temperature effects depends on the
type of system-bath interaction. In the case of quantum nondemolition type of
interaction, squeezing and temperature work in tandem, producing a diffusive
effect on the phase distribution. In contrast, in case of a dissipative
interaction, the influence of temperature can be counteracted by squeezing,
which manifests as a resistence to randomization of phase. We make use of the
phase distributions to bring out a notion of complementarity in atomic systems.
We also study the dispersion of the phase using the phase distributions
conditioned on particular initial states of the system.Comment: Accepted for publication in Physical Review A; changes in section V;
20 pages, 12 figure
Does Quantum Cosmology Predict a Constant Dilatonic Field?
Quantum cosmology may permit to determine the initial conditions of the
Universe. In particular, it may select a specific model between many possible
classical models. In this work, we study a quantum cosmological model based on
the string effective action coupled to matter. The Schutz's formalism is
employed in the description of the fluid. A radiation fluid is considered. In
this way, a time coordinate may be identified and the Wheeler-DeWitt equation
reduces in the minisuperspace to a Schr\"odinger-like equation. It is shown
that, under some quite natural assumptions, the expectation values indicate a
null axionic field and a constant dilatonic field. At the same time the scale
factor exhibits a bounce revealing a singularity-free cosmological model. In
some cases, the mininum value of the scale factor can be related to the value
of gravitational coupling.Comment: Latex file, 14 page
- …
