467 research outputs found

    A developmental and genetic classification for malformations of cortical development: update 2012.

    Get PDF
    Malformations of cerebral cortical development include a wide range of developmental disorders that are common causes of neurodevelopmental delay and epilepsy. In addition, study of these disorders contributes greatly to the understanding of normal brain development and its perturbations. The rapid recent evolution of molecular biology, genetics and imaging has resulted in an explosive increase in our knowledge of cerebral cortex development and in the number and types of malformations of cortical development that have been reported. These advances continue to modify our perception of these malformations. This review addresses recent changes in our perception of these disorders and proposes a modified classification based upon updates in our knowledge of cerebral cortical development

    Body size as a driver of scavenging in theropod dinosaurs

    Get PDF
    This work was funded by the Earth and Natural Sciences Doctoral Studies Programme and the Higher Education Authority through the Programme for Research at Third Level Institutions, Cycle 5 (PRTLI‐5), and cofunded by the European Regional Development Fund (K.H.) and Trinity College Dublin and the Irish Research Council (A.K.).Theropod dinosaurs dominated Earth’s terrestrial ecosystem as a diverse group of predators for more than 160 million years, yet little is known about their foraging ecology. Maintaining a balanced energy budget presented a major challenge for therapods, which ranged from the chicken-sized Microraptor up to the whale-sized Giganotosaurus, in the face of intense competition and the demands of ontogenetic growth. Facultative scavenging, a behavior present in almost all modern predators, may have been important in supplementing energetically expensive lifestyles. By using agentbased models based on the allometric relationship between size and foraging behaviors, we show that theropods between 27 and 1,044 kg would have gained a significant energetic advantage over individuals at both the small and large extremes of theropod body mass through their scavenging efficiency. These results were robust to rate of competition, primary productivity, and detection distance. Our models demonstrate the potential importance of facultative scavenging in theropods and the role of body size in defining its prevalence in Mesozoic terrestrial systems.Publisher PDFPeer reviewe

    Defective Leukocyte Adhesion and Chemotaxis Contributes to Combined Immunodeficiency in Humans with Autosomal Recessive MST1 Deficiency.

    Get PDF
    PURPOSE: To investigate the clinical and functional aspects of MST1 (STK4) deficiency in a profoundly CD4-lymphopenic kindred with a novel homozygous nonsense mutation in STK4. Although recent studies have described the cellular effects of murine Mst1 deficiency, the phenotype of MST1-deficient human lymphocytes has yet to be fully explored. Patient lymphocytes were therefore investigated in the context of current knowledge of murine Mst1 deficiency. METHODS: Genetic etiology was identified by whole exome sequencing of genomic DNA from two siblings, combined with linkage analysis in the wider family. MST1 protein expression was assessed by immunoblotting. The ability of patient lymphocytes to adhere to ICAM-1 under flow conditions was measured, and transwell assays were used to assess chemotaxis. Chemokine receptor expression was examined by flow cytometry and receptor signalling by immunoblotting. RESULTS: A homozygous nonsense mutation in STK4 (c.442C > T, p.Arg148Stop) was found in the patients, leading to a lack of MST1 protein expression. Patient leukocytes exhibited deficient chemotaxis after stimulation with CXCL11, despite preserved expression of CXCR3. Patient lymphocytes were also unable to bind effectively to immobilised ICAM-1 under flow conditions, in keeping with a failure to develop high affinity binding. CONCLUSION: The observed abnormalities of adhesion and migration imply a profound trafficking defect among human MST1-deficient lymphocytes. By analogy with murine Mst1 deficiency and other defects of leucocyte trafficking, this is likely to contribute to immunodeficiency by impairing key aspects of T-cell development and function such as positive selection in the thymus, thymic egress and immune synapse formation in the periphery.This is thepublished version. It first appeared at http://link.springer.com/article/10.1007%2Fs10875-016-0232-2

    Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial

    Get PDF
    Background Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy

    Identification and functional characterization of G6PC2 coding variants influencing glycemic traits define an effector transcript at the G6PC2-ABCB11 locus.

    Get PDF
    Genome wide association studies (GWAS) for fasting glucose (FG) and insulin (FI) have identified common variant signals which explain 4.8% and 1.2% of trait variance, respectively. It is hypothesized that low-frequency and rare variants could contribute substantially to unexplained genetic variance. To test this, we analyzed exome-array data from up to 33,231 non-diabetic individuals of European ancestry. We found exome-wide significant (P<5×10-7) evidence for two loci not previously highlighted by common variant GWAS: GLP1R (p.Ala316Thr, minor allele frequency (MAF)=1.5%) influencing FG levels, and URB2 (p.Glu594Val, MAF = 0.1%) influencing FI levels. Coding variant associations can highlight potential effector genes at (non-coding) GWAS signals. At the G6PC2/ABCB11 locus, we identified multiple coding variants in G6PC2 (p.Val219Leu, p.His177Tyr, and p.Tyr207Ser) influencing FG levels, conditionally independent of each other and the non-coding GWAS signal. In vitro assays demonstrate that these associated coding alleles result in reduced protein abundance via proteasomal degradation, establishing G6PC2 as an effector gene at this locus. Reconciliation of single-variant associations and functional effects was only possible when haplotype phase was considered. In contrast to earlier reports suggesting that, paradoxically, glucose-raising alleles at this locus are protective against type 2 diabetes (T2D), the p.Val219Leu G6PC2 variant displayed a modest but directionally consistent association with T2D risk. Coding variant associations for glycemic traits in GWAS signals highlight PCSK1, RREB1, and ZHX3 as likely effector transcripts. These coding variant association signals do not have a major impact on the trait variance explained, but they do provide valuable biological insights

    Motion dazzle and camouflage as distinct anti-predator defenses.

    Get PDF
    BACKGROUND: Camouflage patterns that hinder detection and/or recognition by antagonists are widely studied in both human and animal contexts. Patterns of contrasting stripes that purportedly degrade an observer's ability to judge the speed and direction of moving prey ('motion dazzle') are, however, rarely investigated. This is despite motion dazzle having been fundamental to the appearance of warships in both world wars and often postulated as the selective agent leading to repeated patterns on many animals (such as zebra and many fish, snake, and invertebrate species). Such patterns often appear conspicuous, suggesting that protection while moving by motion dazzle might impair camouflage when stationary. However, the relationship between motion dazzle and camouflage is unclear because disruptive camouflage relies on high-contrast markings. In this study, we used a computer game with human subjects detecting and capturing either moving or stationary targets with different patterns, in order to provide the first empirical exploration of the interaction of these two protective coloration mechanisms. RESULTS: Moving targets with stripes were caught significantly less often and missed more often than targets with camouflage patterns. However, when stationary, targets with camouflage markings were captured less often and caused more false detections than those with striped patterns, which were readily detected. CONCLUSIONS: Our study provides the clearest evidence to date that some patterns inhibit the capture of moving targets, but that camouflage and motion dazzle are not complementary strategies. Therefore, the specific coloration that evolves in animals will depend on how the life history and ontogeny of each species influence the trade-off between the costs and benefits of motion dazzle and camouflage.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    Periventricular Nodular Heterotopia:Detection of Abnormal Microanatomic Fiber Structures with Whole-Brain Diffusion MR Imaging Tractography

    Get PDF
    Purpose To investigate whether it is possible in patients with periventricular nodular heterotopia (PVNH) to detect abnormal fiber projections that have only previously been reported in the histopathology literature. Materials and Methods Whole-brain diffusion-weighted (DW) imaging data from 14 patients with bilateral PVNH and 14 age- and sex-matched healthy control subjects were prospectively acquired by using 3.0-T magnetic resonance (MR) imaging between August 1, 2008, and December 5, 2012. All participants provided written informed consent. The DW imaging data were processed to generate whole-brain constrained spherical deconvolution (CSD)-based tractography data and super-resolution track-density imaging (TDI) maps. The tractography data were overlaid on coregistered three-dimensional T1-weighted images to visually assess regions of heterotopia. A panel of MR imaging researchers independently assessed each case and indicated numerically (no = 1, yes = 2) as to the presence of abnormal fiber tracks in nodular tissue. The Fleiss κ statistical measure was applied to assess the reader agreement. Results Abnormal fiber tracks emanating from one or more regions of heterotopia were reported by all four readers in all 14 patients with PVNH (Fleiss κ = 1). These abnormal structures were not visible on the tractography data from any of the control subjects and were not discernable on the conventional T1-weighted images of the patients with PVNH. Conclusion Whole-brain CSD-based fiber tractography and super-resolution TDI mapping reveals abnormal fiber projections in nodular tissue suggestive of abnormal organization of white matter (with abnormal fibers both within nodules and projecting to the surrounding white matter) in patients with bilateral PVNH. (©) RSNA, 2016.</p

    Cause of Death and Predictors of All-Cause Mortality in Anticoagulated Patients With Nonvalvular Atrial Fibrillation : Data From ROCKET AF

    Get PDF
    M. Kaste on työryhmän ROCKET AF Steering Comm jäsen.Background-Atrial fibrillation is associated with higher mortality. Identification of causes of death and contemporary risk factors for all-cause mortality may guide interventions. Methods and Results-In the Rivaroxaban Once Daily Oral Direct Factor Xa Inhibition Compared with Vitamin K Antagonism for Prevention of Stroke and Embolism Trial in Atrial Fibrillation (ROCKET AF) study, patients with nonvalvular atrial fibrillation were randomized to rivaroxaban or dose-adjusted warfarin. Cox proportional hazards regression with backward elimination identified factors at randomization that were independently associated with all-cause mortality in the 14 171 participants in the intention-to-treat population. The median age was 73 years, and the mean CHADS(2) score was 3.5. Over 1.9 years of median follow-up, 1214 (8.6%) patients died. Kaplan-Meier mortality rates were 4.2% at 1 year and 8.9% at 2 years. The majority of classified deaths (1081) were cardiovascular (72%), whereas only 6% were nonhemorrhagic stroke or systemic embolism. No significant difference in all-cause mortality was observed between the rivaroxaban and warfarin arms (P=0.15). Heart failure (hazard ratio 1.51, 95% CI 1.33-1.70, P= 75 years (hazard ratio 1.69, 95% CI 1.51-1.90, P Conclusions-In a large population of patients anticoagulated for nonvalvular atrial fibrillation, approximate to 7 in 10 deaths were cardiovascular, whereasPeer reviewe

    Perisylvian and Hippocampal Anomalies in Individuals With Pathogenic GRIN2A Variants

    Get PDF
    BACKGROUND AND OBJECTIVES: Pathogenic variants in GRIN2A are associated with a spectrum of epilepsy-aphasia syndromes (EASs). Seizures as well as speech and language disorders occur frequently but vary widely in severity, both between individuals and across the life span. The link between this phenotypic spectrum and brain characteristics is unknown. Specifically, altered brain networks at the root of speech and language deficits remain to be identified. Patients with pathogenic variants in GRIN2A offer an opportunity to interrogate the impact of glutamate receptor dysfunction on brain development. METHODS: We characterized brain anomalies in individuals with pathogenic GRIN2A variants and EASs, hypothesizing alterations in perisylvian speech-language regions and the striatum. We compared structural MRI data from 10 individuals (3 children and 7 adults, 3 female) with pathogenic GRIN2A variants with data from age-matched controls (N = 51 and N = 203 in a secondary analysis). We examined cortical thickness and volume in 4 a priori hypothesized speech and language regions (inferior frontal, precentral, supramarginal, and superior temporal) and across the whole brain. Subcortical structures (hippocampus, basal ganglia, thalamus) and the corpus callosum were also compared. RESULTS: Individuals with pathogenic GRIN2A variants showed increased thickness and volume in the posterior part of Broca's area (inferior frontal gyrus, pars opercularis). For thickness, the effects were bilateral but more pronounced in the left (large effect size, η2 = 0.37) than the right (η2 = 0.12) hemisphere. Both volume and thickness were also higher in the bilateral superior temporal region while the supramarginal region showed increased thickness only. Whole-brain analyses confirmed left-sided thickness increases in Broca's area, with additional increases in the occipital and superior frontal cortices bilaterally. Hippocampal volume was reduced in the left hemisphere. There were no age-dependent effects or corpus callosum group differences. DISCUSSION: Anomalies in perisylvian regions, with largest differences in Broca's area, suggest an altered development of classical speech-language networks in GRIN2A-related EAS. Left hippocampal reduction suggests a role for this structure in early speech and language development and is consistent with GRIN2A gene expression in that region. Overall, elucidating the neural correlates of EAS provides insights into the impact of GRIN2A dysfunction, opening avenues for targeted intervention in developmental syndromes with compromised speech-language development
    corecore