26,300 research outputs found
Anomalous spin-dependent behaviour of one-dimensional subbands
We report a new electron interaction effect in GaAs/AlGaAs quantum wires.
Using DC-bias spectroscopy, we show that large and abrupt changes occur to the
energies of spin-down (lower energy) states as they populate. The effect is not
observed for spin-up energy states. At B=0, interactions have a pronounced
effect, in the form of the well-known 0.7 Structure. However, our new results
show that interactions strongly affect the energy spectrum at all magnetic
fields, from 0 to 16T, not just in the vicinity of the 0.7 Structure.Comment: 4 pages, 2 figure
Energy-level pinning and the 0.7 spin state in one dimension: GaAs quantum wires studied using finite-bias spectroscopy
We study the effects of electron-electron interactions on the energy levels
of GaAs quantum wires (QWs) using finite-bias spectroscopy. We probe the energy
spectrum at zero magnetic field, and at crossings of opposite-spin-levels in
high in-plane magnetic field B. Our results constitute direct evidence that
spin-up (higher energy) levels pin to the chemical potential as they populate.
We also show that spin-up and spin-down levels abruptly rearrange at the
crossing in a manner resembling the magnetic phase transitions predicted to
occur at crossings of Landau levels. This rearranging and pinning of subbands
provides a phenomenological explanation for the 0.7 structure, a
one-dimensional (1D) nanomagnetic state, and its high-B variants.Comment: 6 pages, 4 figure
Small gaps between products of two primes
Let denote the number that is a product of exactly two
distinct primes. We prove that
This sharpens an earlier result of the authors (arXivMath NT/0506067), which
had 26 in place of 6. More generally, we prove that if is any positive
integer, then
We also prove several other results on the representation of numbers with
exactly two prime factors by linear forms.Comment: 11N25 (primary) 11N36 (secondary
Dynamical preparation of EPR entanglement in two-well Bose-Einstein condensates
We propose to generate Einstein-Podolsky-Rosen (EPR) entanglement between
groups of atoms in a two-well Bose-Einstein condensate using a dynamical
process similar to that employed in quantum optics. The local nonlinear S-wave
scattering interaction has the effect of creating a spin squeezing at each
well, while the tunneling, analogous to a beam splitter in optics, introduces
an interference between these fields that results in an inter-well
entanglement. We consider two internal modes at each well, so that the
entanglement can be detected by measuring a reduction in the variances of the
sums of local Schwinger spin observables. As is typical of continuous variable
(CV) entanglement, the entanglement is predicted to increase with atom number,
and becomes sufficiently strong at higher numbers of atoms that the EPR paradox
and steering non-locality can be realized. The entanglement is predicted using
an analytical approach and, for larger atom numbers, stochastic simulations
based on truncated Wigner function. We find generally that strong tunnelling is
favourable, and that entanglement persists and is even enhanced in the presence
of realistic nonlinear losses.Comment: 15 pages, 19 figure
Cancellation exponent and multifractal structure in two-dimensional magnetohydrodynamics: direct numerical simulations and Lagrangian averaged modeling
We present direct numerical simulations and Lagrangian averaged (also known
as alpha-model) simulations of forced and free decaying magnetohydrodynamic
turbulence in two dimensions. The statistics of sign cancellations of the
current at small scales is studied using both the cancellation exponent and the
fractal dimension of the structures. The alpha-model is found to have the same
scaling behavior between positive and negative contributions as the direct
numerical simulations. The alpha-model is also able to reproduce the time
evolution of these quantities in free decaying turbulence. At large Reynolds
numbers, an independence of the cancellation exponent with the Reynolds numbers
is observed.Comment: Finite size box effects have been taken into account in the
definition of the partition function. This has resulted in a more clear
scaling in all figures. Several points are clarified in the tex
Power spectra of velocities and magnetic fields on the solar surface and their dependence on the unsigned magnetic flux density
We have performed power spectral analysis of surface temperatures,
velocities, and magnetic fields, using spectro-polarimetric data taken with the
Hinode Solar Optical Telescope. When we make power spectra in a field-of-view
covering the super-granular scale, kinetic and thermal power spectra have a
prominent peak at the granular scale while the magnetic power spectra have a
broadly distributed power over various spatial scales with weak peaks at both
the granular and supergranular scales. To study the power spectra separately in
internetwork and network regions, power spectra are derived in small
sub-regions extracted from the field-of-view. We examine slopes of the power
spectra using power-law indices, and compare them with the unsigned magnetic
flux density averaged in the sub-regions. The thermal and kinetic spectra are
steeper than the magnetic ones at the sub-granular scale in the internetwork
regions, and the power-law indices differ by about 2. The power-law indices of
the magnetic power spectra are close to or smaller than -1 at that scale, which
suggests the total magnetic energy mainly comes from either the granular scale
magnetic structures or both the granular scale and smaller ones contributing
evenly. The slopes of the thermal and kinetic power spectra become less steep
with increasing unsigned flux density in the network regions. The power-law
indices of all the thermal, kinetic, and magnetic power spectra become similar
when the unsigned flux density is larger than 200 Mx cm^-2.Comment: 9 pages, 6 figures, accepted for publication in Ap
Quantum Energies of Interfaces
We present a method for computing the one-loop, renormalized quantum energies
of symmetrical interfaces of arbitrary dimension and codimension using
elementary scattering data. Internal consistency requires finite-energy sum
rules relating phase shifts to bound state energies.Comment: 8 pages, 1 figure, minor changes, Phys. Rev. Lett., in prin
Quantization of the Bianchi type-IX model in supergravity with a cosmological constant
Diagonal Bianchi type-IX models are studied in the quantum theory of supergravity with a cosmological constant. It is shown, by imposing the
supersymmetry and Lorentz quantum constraints, that there are no physical
quantum states in this model. The Friedmann model in supergravity
with cosmological constant does admit quantum states. However, the Bianchi
type-IX model provides a better guide to the behaviour of a generic state,
since more gravitino modes are available to be excited. These results indicate
that there may be no physical quantum states in the full theory of
supergravity with a non-zero cosmological constant. are available to be
excited. These results indicate that there may be no physical quantum states in
the full theory of supergravity with a non-zero cosmological
constant.Comment: 17 pages report DAMTP R93/3
- …
