543 research outputs found
Recommended from our members
Characterisation of extraterrestrial samples by Raman and Electron microprobes
Postgerminative growth and lipid catabolism in oilseeds lacking the glyoxylate cycle
The glyoxylate cycle is regarded as essential for postgerminative growth and seedling establishment in oilseed plants. We have identified two allelic Arabidopsis mutants, icl-1 and icl-2, which lack the glyoxylate cycle because of the absence of the key enzyme isocitrate lyase. These mutants demonstrate that the glyoxylate cycle is not essential for germination. Furthermore, photosynthesis can compensate for the absence of the glyoxylate cycle during postgerminative growth, and only when light intensity or day length is decreased does seedling establishment become compromised. The provision of exogenous sugars can overcome this growth deficiency. The icl mutants also demonstrate that the glyoxylate cycle is important for seedling survival and recovery after prolonged dark conditions that approximate growth in nature. Surprisingly, despite their inability to catalyze the net conversion of acetate to carbohydrate, mutant seedlings are able to break down storage lipids. Results suggest that lipids can be used as a source of carbon for respiration in germinating oilseeds and that products of fatty acid catabolism can pass from the peroxisome to the mitochondrion independently of the glyoxylate cycle. However, an additional anaplerotic source of carbon is required for lipid breakdown and seedling establishment. This source can be provided by the glyoxylate cycle or, in its absence, by exogenous sucrose or photosynthesis
Rapid Raman mapping for chocolate analysis
Raman microspectroscopy mapping capabilities have advanced significantly and have been applied to cell and pharmaceutical tablet formulation analysis. Bulk Raman investigations of food and their constituents have been carried out but little work exists on the application of Raman mapping capabilities to food. Here, we assess the applicability of Raman microspectroscopy mapping to the analysis of chocolate and examine both white and milk chocolate samples. It was found that the sucrose, lactose and fat constituents of white chocolate could be extracted and spatially resolved, indicating that the sucrose and lactose formed particles within a matrix of 'fats'. Fluorescence from cocoa solids present in milk chocolate prevented chemical mapping with the instrumentation used. Raman mapping should provide a powerful analytical technique for the analysis and development of food products
Recommended from our members
Microcraters in aluminum foils exposed by Stardust
We will present preliminary results on the nature and size frequency distribution of microcraters that formed in aluminum foils during the flyby of comet Wild 2 by the Stardust spacecraft
Theory of the first-order isostructural valence phase transitions in mixed valence compounds YbIn_{x}Ag_{1-x}Cu_{4}
For describing the first-order isostructural valence phase transition in
mixed valence compounds we develop a new approach based on the lattice Anderson
model. We take into account the Coulomb interaction between localized f and
conduction band electrons and two mechanisms of electron-lattice coupling. One
is related to the volume dependence of the hybridization. The other is related
to local deformations produced by f- shell size fluctuations accompanying
valence fluctuations. The large f -state degeneracy allows us to use the 1/N
expansion method. Within the model we develop a mean-field theory for the
first-order valence phase transition in YbInCu_{4}. It is shown that the
Coulomb interaction enhances the exchange interaction between f and conduction
band electron spins and is the driving force of the phase transition. A
comparison between the theoretical calculations and experimental measurements
of the valence change, susceptibility, specific heat, entropy, elastic
constants and volume change in YbInCu_{4} and YbAgCu_{4} are presented, and a
good quantitative agreement is found. On the basis of the model we describe the
evolution from the first-order valence phase transition to the continuous
transition into the heavy-fermion ground state in the series of compounds
YbIn_{1-x}Ag_{x}Cu_{4}. The effect of pressure on physical properties of
YbInCu_{4} is studied and the H-T phase diagram is found.Comment: 17 pages RevTeX, 9 Postscript figures, to be submitted to Phys.Rev.
A search for resonances decaying into a Higgs boson and a new particle X in the XH → qqbb final state with the ATLAS detector
A search for heavy resonances decaying into a Higgs boson (H) and a new particle (X) is reported, utilizing 36.1 fb−1 of proton–proton collision data at collected during 2015 and 2016 with the ATLAS detector at the CERN Large Hadron Collider. The particle X is assumed to decay to a pair of light quarks, and the fully hadronic final state is analysed. The search considers the regime of high XH resonance masses, where the X and H bosons are both highly Lorentz-boosted and are each reconstructed using a single jet with large radius parameter. A two-dimensional phase space of XH mass versus X mass is scanned for evidence of a signal, over a range of XH resonance mass values between 1 TeV and 4 TeV, and for X particles with masses from 50 GeV to 1000 GeV. All search results are consistent with the expectations for the background due to Standard Model processes, and 95% CL upper limits are set, as a function of XH and X masses, on the production cross-section of the resonance
Input of sugarcane post-harvest residues into the soil
Sugarcane (Saccharum spp.) crops provide carbon (C) for soil through straw and root system decomposition. Recently, however, sugarcane producers are considering straw to be removed for electricity or second generation ethanol production. To elucidate the role of straw and root system on the carbon supply into the soil, the biomass inputs from sugarcane straw (tops and dry leaves) and from root system (rhizomes and roots) were quantified, and its contribution to provide C to the soil was estimated. Three trials were carried out in the State of Sao Paulo, Brazil, from 2006 to 2009. All sites were cultivated with the variety SP81 3250 under the green sugarcane harvest. Yearly, post-harvest sugarcane residues (tops, dry leaves, roots and rhizomes) were sampled; weighted and dried for the dry mass (DM) production to be estimated. On average, DM root system production was 4.6 Mg ha-1 year-1 (1.5 Mg C ha-1 year-1) and 11.5 Mg ha-1 year-1 (5.1 Mg C ha-1 year-1) of straw. In plant cane, 35 % of the total sugarcane DM was allocated into the root system, declining to 20 % in the third ratoon. The estimate of potential allocation of sugarcane residues to soil organic C was 1.1 t ha-1 year-1; out of which 33 % was from root system and 67 % from straw. The participation of root system should be higher if soil layer is evaluated, a deeper soil layer, if root exudates are accounted and if the period of higher production of roots is considered
Characterizing the polymorphism K232A of the diacylglycerol-acyltransferase-1 lipogenic enzyme of bovine Bos taurus using in silico comparative protein prediction analyses
Arabidopsis seedlings display a remarkable resilience under severe mineral starvation using their metabolic plasticity to remain self-sufficient for weeks
During the life cycle of plants, seedlings are considered vulnerable because they are at the interface between the highly stress tolerant seed embryos and the established plant, and must develop rapidly, often in a challenging environment, with limited access to nutrients and light. Using a simple experimental system, whereby the seedling stage of Arabidopsis is considerably prolonged by nutrient starvation, we analysed the physiology and metabolism of seedlings maintained in such conditions up to 4 weeks. Although development was arrested at the cotyledon stage, there was no sign of senescence and seedlings remained viable for weeks, yielding normal plants after transplantation. Photosynthetic activity compensated for respiratory carbon losses, and energy dissipation by photorespiration and alternative oxidase appeared important. Photosynthates were essentially stored as organic acids, while the pool of free amino acids remained stable. Seedlings lost the capacity to store lipids in cytosolic lipid droplets, but developed large plastoglobuli. Arabidopsis seedlings arrested in their development because of mineral starvation displayed therefore a remarkable resilience, using their metabolic and physiological plasticity to maintain a steady state for weeks, allowing resumption of development when favourable conditions ensue
Multi-trait analysis characterizes the genetics of thyroid function and identifies causal associations with clinical implications
To date only a fraction of the genetic footprint of thyroid function has been clarified. We report a genome-wide association study meta-analysis of thyroid function in up to 271,040 individuals of European ancestry, including reference range thyrotropin (TSH), free thyroxine (FT4), free and total triiodothyronine (T3), proxies for metabolism (T3/FT4 ratio) as well as dichotomized high and low TSH levels. We revealed 259 independent significant associations for TSH (61% novel), 85 for FT4 (67% novel), and 62 novel signals for the T3 related traits. The loci explained 14.1%, 6.0%, 9.5% and 1.1% of the total variation in TSH, FT4, total T3 and free T3 concentrations, respectively. Genetic correlations indicate that TSH associated loci reflect the thyroid function determined by free T3, whereas the FT4 associations represent the thyroid hormone metabolism. Polygenic risk score and Mendelian randomization analyses showed the effects of genetically determined variation in thyroid function on various clinical outcomes, including cardiovascular risk factors and diseases, autoimmune diseases, and cancer. In conclusion, our results improve the understanding of thyroid hormone physiology and highlight the pleiotropic effects of thyroid function on various diseases.</p
- …
