3,145 research outputs found
Higgs Mass from D-Terms: a Litmus Test
We explore supersymmetric theories in which the Higgs mass is boosted by the
non-decoupling D-terms of an extended gauge symmetry, defined here to
be a general linear combination of hypercharge, baryon number, and lepton
number. Crucially, the gauge coupling, , is bounded from below to
accommodate the Higgs mass, while the quarks and leptons are required by gauge
invariance to carry non-zero charge under . This induces an irreducible
rate, BR, for relevant to
existing and future resonance searches, and gives rise to higher dimension
operators that are stringently constrained by precision electroweak
measurements. Combined, these bounds define a maximally allowed region in the
space of observables, (BR, ), outside of which is excluded by
naturalness and experimental limits. If natural supersymmetry utilizes
non-decoupling D-terms, then the associated boson can only be observed
within this window, providing a model independent `litmus test' for this broad
class of scenarios at the LHC. Comparing limits, we find that current LHC
results only exclude regions in parameter space which were already disfavored
by precision electroweak data.Comment: 7 pages, 9 figure
Asymmetric Origin for Gravitino Relic Density in the Hybrid Gravity-Gauge Mediated Supersymmetry Breaking
We propose the hybrid gravity-gauge mediated supersymmetry breaking where the
gravitino mass is about several GeV. The strong constraints on supersymmetry
viable parameter space from the CMS and ATLAS experiments at the LHC can be
relaxed due to the heavy colored supersymmetric particles, and it is consistent
with null results in the dark matter (DM) direct search experiments such as
XENON100. In particular, the possible maximal flavor and CP violations from the
relatively small gravity mediation may naturally account for the recent LHCb
anomaly. In addition, because the gravitino mass is around the asymmetric DM
mass, we propose the asymmetric origin of the gravitino relic density and solve
the cosmological coincident problem on the DM and baryon densities \Omega_{\rm
DM}:\Omega_{B}\approx 5:1. The gravitino relic density arises from asymmetric
metastable particle (AMP) late decay. However, we show that there is no AMP
candidate in the minimal supersymmetric Standard Model (SM) due to the robust
gaugino/Higgsino mediated wash-out effects. Interestingly, AMP can be realized
in the well motivated supersymmetric SMs with vector-like particles or
continuous U(1)_R symmetry. Especially, the lightest CP-even Higgs boson mass
can be lifted in the supersymmetric SMs with vector-like particles.Comment: RevTex4, 21 pages, 1 figure, minor corrections, JHEP versio
Probing Colored Particles with Photons, Leptons, and Jets
If pairs of new colored particles are produced at the Large Hadron Collider,
determining their quantum numbers, and even discovering them, can be
non-trivial. We suggest that valuable information can be obtained by measuring
the resonant signals of their near-threshold QCD bound states. If the particles
are charged, the resulting signatures include photons and leptons and are
sufficiently rich for unambiguously determining their various quantum numbers,
including the charge, color representation and spin, and obtaining a precise
mass measurement. These signals provide well-motivated benchmark models for
resonance searches in the dijet, photon+jet, diphoton and dilepton channels.
While these measurements require that the lifetime of the new particles be not
too short, the resulting limits, unlike those from direct searches for pair
production above threshold, do not depend on the particles' decay modes. These
limits may be competitive with more direct searches if the particles decay in
an obscure way.Comment: 39 pages, 9 figures; v2: more recent searches include
The role of glacier mice in the invertebrate colonisation of glacial surfaces: the moss balls of the Falljökull, Iceland
Glacier surfaces have a surprisingly complex ecology. Cryoconite holes contain diverse invertebrate communities while other invertebrates, such as Collembola often graze on algae and windblown dead organic on the glacier surface. Glacier mice (ovoid unattached moss balls) occur on some glaciers worldwide. Studies of these glacier mice have concentrated on their occurrence and mode of formation. There are no reports of the invertebrate communities. But, such glacier mice may provide a suitable favourable habitat and refuge for a variety of invertebrate groups to colonise the glacier surface. Here we describe the invertebrate fauna of the glacier mice (moss balls) of the Falljökull, Iceland. The glacier mice were composed of Racomitrium sp. and varied in size from 8.0 to 10.0 cm in length. All glacier mice studied contained invertebrates. Two species of Collembola were present. Pseudisotoma sensibilis (Tullberg, 1876) was numerically dominant with between 12 and 73 individuals per glacier mouse while Desoria olivacea (Tullberg, 1871) occurred but in far lower numbers. Tardigrada and Nematoda had mean densities of approximately 200 and 1,000 respectively. No Acari, Arachnida or Enchytraeidae were observed which may be related to the difficulty these groups have in colonizing the glacier mice. We suggest that glacier mice provide an unusual environmentally ameliorated microhabitat for an invertebrate community dwelling on a glacial surface. The glacier mice thereby enable an invertebrate fauna to colonise an otherwise largely inhospitable location with implications for carbon flow in the system
Design and evaluation of the immunogenicity and efficacy of a biomimetic particulate formulation of viral antigens
Subunit viral vaccines are typically not as efficient as live attenuated or inactivated vaccines at inducing protective immune responses. This paper describes an alternative 'biomimetic' technology; whereby viral antigens were formulated around a polymeric shell in a rationally arranged fashion with a surface glycoprotein coated on to the surface and non-structural antigen and adjuvant encapsulated. We evaluated this model using BVDV E2 and NS3 proteins formulated in poly-(D, L-lactic-co-glycolic acid) (PLGA) nanoparticles adjuvanted with polyinosinic:polycytidylic acid (poly(I:C) as an adjuvant (Vaccine-NP). This Vaccine-NP was compared to ovalbumin and poly(I:C) formulated in a similar manner (Control-NP) and a commercial adjuvanted inactivated BVDV vaccine (IAV), all inoculated subcutaneously and boosted prior to BVDV-1 challenge. Significant virus-neutralizing activity, and E2 and NS3 specific antibodies were observed in both Vaccine-NP and IAV groups following the booster immunisation. IFN-γ responses were observed in ex vivo PBMC stimulated with E2 and NS3 proteins in both vaccinated groups. We observed that the protection afforded by the particulate vaccine was comparable to the licenced IAV formulation. In conclusion, the biomimetic particulates showed a promising immunogenicity and efficacy profile that may be improved by virtue of being a customisable mode of delivery
Galaxy And Mass Assembly (GAMA): refining the local galaxy merger rate using morphological information
We use the Galaxy And Mass Assembly (GAMA) survey to measure the local Universe mass dependent merger fraction and merger rate using galaxy pairs and the CAS structural method, which identifies highly asymmetric merger candidate galaxies. Our goals are to determine which types of mergers produce highly asymmetrical galaxies, and to provide a new measurement of the local galaxy major merger rate. We examine galaxy pairs at stellar mass limits down to M∗ = 108M⊙ with mass ratios of 4:1) the lower mass companion becomes highly asymmetric, while the larger galaxy is much less affected. The fraction of highly asymmetric paired galaxies which have a major merger companion is highest for the most massive galaxies and drops progressively with decreasing mass. We calculate that the mass dependent major merger fraction is fairly constant at _ 1.3 − 2% between 109.5 < M∗ < 1011.5M⊙, and increases to _ 4% at lower masses. When the observability time scales are taken into consideration, the major merger rate is found to approximately triple over the mass range we consider. The total co-moving volume major merger rate over the range 108.0 < M∗ < 1011.5M⊙ is (1.2 ± 0.5) × 10−3 h3 70 Mpc−3 Gyr−1
Wilson Lines and a Canonical Basis of SU(4) Heterotic Standard Models
The spontaneous breaking of SU(4) heterotic standard models by Z_3 x Z_3
Wilson lines to the MSSM with three right-handed neutrino supermultiplets and
gauge group SU(3)_C x SU(2)_L x U(1) x U(1) is explored. The two-dimensional
subspace of the Spin(10) Lie algebra that commutes with su(3)_C + su(2)_L is
analyzed. It is shown that there is a unique basis for which the initial soft
supersymmetry breaking parameters are uncorrelated and for which the U(1) x
U(1) field strengths have no kinetic mixing at any scale. If the Wilson lines
"turn on" at different scales, there is an intermediate regime with either a
left-right or a Pati-Salam type model. We compute their spectra directly from
string theory, and adjust the associated mass parameter so that all gauge
parameters exactly unify. A detailed analysis of the running gauge couplings
and soft gaugino masses is presented.Comment: 59 pages, 9 figure
Expression of steroid receptor coactivator 3 in ovarian epithelial cancer is a poor prognostic factor and a marker for platinum resistance
BACKGROUND: Steroid receptor coactivator 3 (SRC3) is an important coactivator of a number of transcription factors and is associated with a poor outcome in numerous tumours. Steroid receptor coactivator 3 is amplified in 25% of epithelial ovarian cancers (EOCs) and its expression is higher in EOCs compared with non-malignant tissue. No data is currently available with regard to the expression of SRC-3 in EOC and its influence on outcome or the efficacy of treatment. METHODS: Immunohistochemistry was performed for SRC3, oestrogen receptor-α, HER2, PAX2 and PAR6, and protein expression was quantified using automated quantitative immunofluorescence (AQUA) in 471 EOCs treated between 1991 and 2006 with cytoreductive surgery followed by first-line treatment platinum-based therapy, with or without a taxane. RESULTS: Steroid receptor coactivator 3 expression was significantly associated with advanced stage and was an independent prognostic marker. High expression of SRC3 identified patients who have a significantly poorer survival with single-agent carboplatin chemotherapy, while with carboplatin/paclitaxel treatment such a difference was not seen. CONCLUSION: Steroid receptor coactivator 3 is a poor prognostic factor in EOCs and appears to identify a population of patients who would benefit from the addition of taxanes to their chemotherapy regimen, due to intrinsic resistance to platinum therapy
Precision Gauge Unification from Extra Yukawa Couplings
We investigate the impact of extra vector-like GUT multiplets on the
predicted value of the strong coupling. We find in particular that Yukawa
couplings between such extra multiplets and the MSSM Higgs doublets can resolve
the familiar two-loop discrepancy between the SUSY GUT prediction and the
measured value of alpha_3. Our analysis highlights the advantages of the
holomorphic scheme, where the perturbative running of gauge couplings is
saturated at one loop and further corrections are conveniently described in
terms of wavefunction renormalization factors. If the gauge couplings as well
as the extra Yukawas are of O(1) at the unification scale, the relevant
two-loop correction can be obtained analytically. However, the effect persists
also in the weakly-coupled domain, where possible non-perturbative corrections
at the GUT scale are under better control.Comment: 26 pages, LaTeX. v6: Important early reference adde
Computers from plants we never made. Speculations
We discuss possible designs and prototypes of computing systems that could be
based on morphological development of roots, interaction of roots, and analog
electrical computation with plants, and plant-derived electronic components. In
morphological plant processors data are represented by initial configuration of
roots and configurations of sources of attractants and repellents; results of
computation are represented by topology of the roots' network. Computation is
implemented by the roots following gradients of attractants and repellents, as
well as interacting with each other. Problems solvable by plant roots, in
principle, include shortest-path, minimum spanning tree, Voronoi diagram,
-shapes, convex subdivision of concave polygons. Electrical properties
of plants can be modified by loading the plants with functional nanoparticles
or coating parts of plants of conductive polymers. Thus, we are in position to
make living variable resistors, capacitors, operational amplifiers,
multipliers, potentiometers and fixed-function generators. The electrically
modified plants can implement summation, integration with respect to time,
inversion, multiplication, exponentiation, logarithm, division. Mathematical
and engineering problems to be solved can be represented in plant root networks
of resistive or reaction elements. Developments in plant-based computing
architectures will trigger emergence of a unique community of biologists,
electronic engineering and computer scientists working together to produce
living electronic devices which future green computers will be made of.Comment: The chapter will be published in "Inspired by Nature. Computing
inspired by physics, chemistry and biology. Essays presented to Julian Miller
on the occasion of his 60th birthday", Editors: Susan Stepney and Andrew
Adamatzky (Springer, 2017
- …
