67 research outputs found

    P2X7 Receptor and Caspase 1 Activation Are Central to Airway Inflammation Observed after Exposure to Tobacco Smoke

    Get PDF
    Chronic Obstructive Pulmonary Disease (COPD) is a cigarette smoke (CS)-driven inflammatory airway disease with an increasing global prevalence. Currently there is no effective medication to stop the relentless progression of this disease. It has recently been shown that an activator of the P2X7/inflammasome pathway, ATP, and the resultant products (IL-1β/IL-18) are increased in COPD patients. The aim of this study was to determine whether activation of the P2X7/caspase 1 pathway has a functional role in CS-induced airway inflammation. Mice were exposed to CS twice a day to induce COPD-like inflammation and the role of the P2X7 receptor was investigated. We have demonstrated that CS-induced neutrophilia in a pre-clinical model is temporally associated with markers of inflammasome activation, (increased caspase 1 activity and release of IL-1β/IL-18) in the lungs. A selective P2X7 receptor antagonist and mice genetically modified so that the P2X7 receptors were non-functional attenuated caspase 1 activation, IL-1β release and airway neutrophilia. Furthermore, we demonstrated that the role of this pathway was not restricted to early stages of disease development by showing increased caspase 1 activation in lungs from a more chronic exposure to CS and from patients with COPD. This translational data suggests the P2X7/Inflammasome pathway plays an ongoing role in disease pathogenesis. These results advocate the critical role of the P2X7/caspase 1 axis in CS-induced inflammation, highlighting this as a possible therapeutic target in combating COPD

    Activation of P2X7-mediated apoptosis Inhibits DMBA/TPA-induced formation of skin papillomas and cancer in mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The study tested the hypothesis that apoptosis can prevent and control growth of neoplastic cells. Previous studies in-vitro have shown that the pro-apoptotic P2X<sub>7 </sub>receptor regulates growth of epithelial cells. The specific objective of the present study was to understand to what degree the P2X<sub>7 </sub>system controls development and growth of skin cancer in vivo, and what cellular and molecular mechanisms are involved in the P2X<sub>7 </sub>action.</p> <p>Methods</p> <p>Skin neoplasias in mice (papillomas, followed by squamous spindle-cell carcinomas) were induced by local application of DMBA/TPA. Experiments in-vitro utilized cultured epidermal keratinocytes generated from wild-type or from P2X<sub>7</sub>-null mice. Assays involved protein immunostaining and Western blots; mRNA real-time qPCR; and apoptosis (evaluated in situ by TUNEL and quantified in cultured keratinocytes as solubilized DNA or by ELISA). Changes in cytosolic calcium or in ethidium bromide influx (P2X<sub>7 </sub>pore formation) were determined by confocal laser microscopy.</p> <p>Results</p> <p>(a) Co-application on the skin of the P2X<sub>7 </sub>specific agonist BzATP inhibited formation of DMBA/TPA-induced skin papillomas and carcinomas. At the completion of study (week 28) the proportion of living animals with cancers in the DMBA/TPA group was 100% compared to 43% in the DMBA/TPA+BzATP group. (b) In the normal skin BzATP affected mainly P2X<sub>7</sub>-receptor – expressing proliferating keratinocytes, where it augmented apoptosis without evoking inflammatory changes. (c) In BzATP-treated mice the degree of apoptosis was lesser in cancer than in normal or papilloma keratinocytes. (d) Levels of P2X<sub>7 </sub>receptor, protein and mRNA were 4–5 fold lower in cancer tissues than in normal mouse tissues. (e) In cultured mouse keratinocytes BzATP induced apoptosis, formation of pores in the plasma membrane, and facilitated prolonged calcium influx. (f) The BzATP-induced apoptosis, pore-formation and augmented calcium influx had similar dose-dependence for BzATP. (g) Pore formation and the augmented calcium influx were depended on the expression of the P2X<sub>7 </sub>receptor, while the BzATP-induced apoptosis depended on calcium influx. (h) The BzATP-induced apoptosis could be blocked by co-treatment with inhibitors of caspase-9 and caspase-3, but not of caspase-8.</p> <p>Conclusion</p> <p>(a) P2X<sub>7</sub>-dependent apoptosis is an important mechanism that controls the development and progression of epidermal neoplasia in the mouse. (b) The P2X<sub>7</sub>-dependent apoptosis is mediated by calcium influx via P2X<sub>7 </sub>pores, and involves the caspase-9 (mitochondrial) pathway. (c) The diminished pro-apoptotic effect of BzATP in mouse cancer keratinocytes is possibly the result of low expression of the P2X<sub>7 </sub>receptor. (d) Activation of P2X<sub>7</sub>-dependent apoptosis, e.g. with BzATP could be a novel chemotherapeutic growth-preventive modality for papillomas and epithelial cancers in vivo.</p

    The Role of Reactive-Oxygen-Species in Microbial Persistence and Inflammation

    Get PDF
    The mechanisms of chronic infections caused by opportunistic pathogens are of keen interest to both researchers and health professionals globally. Typically, chronic infectious disease can be characterized by an elevation in immune response, a process that can often lead to further destruction. Reactive-Oxygen-Species (ROS) have been strongly implicated in the aforementioned detrimental response by host that results in self-damage. Unlike excessive ROS production resulting in robust cellular death typically induced by acute infection or inflammation, lower levels of ROS produced by host cells are increasingly recognized to play a critical physiological role for regulating a variety of homeostatic cellular functions including growth, apoptosis, immune response, and microbial colonization. Sources of cellular ROS stimulation can include “danger-signal-molecules” such as extracellular ATP (eATP) released by stressed, infected, or dying cells. Particularly, eATP-P2X7 receptor mediated ROS production has been lately found to be a key modulator for controlling chronic infection and inflammation. There is growing evidence that persistent microbes can alter host cell ROS production and modulate eATP-induced ROS for maintaining long-term carriage. Though these processes have yet to be fully understood, exploring potential positive traits of these “injurious” molecules could illuminate how opportunistic pathogens maintain persistence through physiological regulation of ROS signaling

    Dietary Blue Pigments Derived from Genipin, Attenuate Inflammation by Inhibiting LPS-Induced iNOS and COX-2 Expression via the NF-κB Inactivation

    Get PDF
    The edible blue pigments produced by gardenia fruits have been used as value-added colorants for foods in East Asia for 20 years. However, the biological activity of the blue pigments derived from genipin has not been reported.The anti-inflammatory effect of blue pigments was studied in lipopolysaccharide (LPS) stimulated RAW 264.7 macrophage in vitro. The secretions of nitric oxide (NO) and prostaglandin E(2) (PGE(2)) were inhibited in concentration-dependent manner by blue pigments. Real-time reverse-transcription polymerase chain reaction (Real-time RT-PCR) analyses demonstrated that the mRNA expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), interleukin (IL)-6, and tumor necrosis factor alpha (TNF-α) was inhibited, moreover, ELISA results showed that the productions of IL-6 and TNF-α were inhibited. Cell-based ELISA revealed the COX-2 protein expression was inhibited. The proteome profiler array showed that 12 cytokines and chemokines involved in the inflammatory process were down-regulated by blue pigments. Blue pigments inhibited the nuclear transcription factor kappa-B (NF-κB) activation induced by LPS, and this was associated with decreasing the DNA-binding activity of p65 and p50. Furthermore, blue pigments suppressed the degradation of inhibitor of κB (IκB) α, Inhibitor of NF-κB Kinase (IKK) α, IKK-β, and phosphorylation of IκB-α. The anti-inflammatory effect of blue pigments in vivo was studied in carrageenan-induced paw edema and LPS-injecting ICR mice. Finally, blue pigments significantly inhibited paw swelling and reduced plasma TNF-α and IL-6 production in vivo.These results suggest that the anti-inflammatory properties of blue pigments might be the results from the inhibition of iNOS, COX-2, IL-6, IL-1β, and TNF-α expression through the down-regulation of NF-κB activation, which will provide strong scientific evidence for the edible blue pigments to be developed as a new health-enhancing nutritional food for the prevention and treatment of inflammatory diseases

    P2 purinergic receptor modulation of cytokine production

    Get PDF
    Cytokines serve important functions in controlling host immunity. Cells involved in the synthesis of these polypeptide mediators have evolved highly regulated processes to ensure that production is carefully balanced. In inflammatory and immune disorders, however, mis-regulation of the production and/or activity of cytokines is recognized as a major contributor to the disease process, and therapeutics that target individual cytokines are providing very effective treatment options in the clinic. Leukocytes are the principle producers of a number of key cytokines, and these cells also express numerous members of the purinergic P2 receptor family. Studies in several cellular systems have provided evidence that P2 receptor modulation can affect cytokine production, and mechanistic features of this regulation have emerged. This review highlights three separate examples corresponding to (1) P2Y6 receptor mediated impact on interleukin (IL)-8 production, (2) P2Y11 receptor-mediated affects on IL-12/23 output, and (3) P2X7 receptor mediated IL-1β posttranslational processing. These examples demonstrate important roles of purinergic receptors in the modulation of cytokine production. Extension of these cellular observations to in vivo situations may lead to new therapeutic strategies for treating cytokine-mediated diseases

    Nucleotide receptor signalling and the generation of reactive oxygen species

    Get PDF
    Elevated levels of extracellular nucleotides are present at sites of inflammation, platelet degranulation and cellular damage or lysis. These extracellular nucleotides can lead to the activation of purinergic (nucleotide) receptors on various leukocytes, including monocytes, macrophages, eosinophils, and neutrophils. In turn, nucleotide receptor activation has been linked to increased cellular production and release of multiple inflammatory mediators, including superoxide anion, nitric oxide and other reactive oxygen species (ROS). In the present review, we will summarize the evidence that extracellular nucleotides can facilitate the generation of multiple ROS by leukocytes. In addition, we will discuss several potential mechanisms by which nucleotide-enhanced ROS production may occur. Delineation of these mechanisms is important for understanding the processes associated with nucleotide-induced antimicrobial activities, cell signalling, apoptosis, and pathology

    Purinergic signalling and immune cells

    Get PDF
    This review article provides a historical perspective on the role of purinergic signalling in the regulation of various subsets of immune cells from early discoveries to current understanding. It is now recognised that adenosine 5'-triphosphate (ATP) and other nucleotides are released from cells following stress or injury. They can act on virtually all subsets of immune cells through a spectrum of P2X ligand-gated ion channels and G protein-coupled P2Y receptors. Furthermore, ATP is rapidly degraded into adenosine by ectonucleotidases such as CD39 and CD73, and adenosine exerts additional regulatory effects through its own receptors. The resulting effect ranges from stimulation to tolerance depending on the amount and time courses of nucleotides released, and the balance between ATP and adenosine. This review identifies the various receptors involved in the different subsets of immune cells and their effects on the function of these cells
    corecore