200 research outputs found
Electric Power Allocation in a Network of Fast Charging Stations
In order to increase the penetration of electric vehicles, a network of fast
charging stations that can provide drivers with a certain level of quality of
service (QoS) is needed. However, given the strain that such a network can
exert on the power grid, and the mobility of loads represented by electric
vehicles, operating it efficiently is a challenging problem. In this paper, we
examine a network of charging stations equipped with an energy storage device
and propose a scheme that allocates power to them from the grid, as well as
routes customers. We examine three scenarios, gradually increasing their
complexity. In the first one, all stations have identical charging capabilities
and energy storage devices, draw constant power from the grid and no routing
decisions of customers are considered. It represents the current state of
affairs and serves as a baseline for evaluating the performance of the proposed
scheme. In the second scenario, power to the stations is allocated in an
optimal manner from the grid and in addition a certain percentage of customers
can be routed to nearby stations. In the final scenario, optimal allocation of
both power from the grid and customers to stations is considered. The three
scenarios are evaluated using real traffic traces corresponding to weekday rush
hour from a large metropolitan area in the US. The results indicate that the
proposed scheme offers substantial improvements of performance compared to the
current mode of operation; namely, more customers can be served with the same
amount of power, thus enabling the station operators to increase their
profitability. Further, the scheme provides guarantees to customers in terms of
the probability of being blocked by the closest charging station. Overall, the
paper addresses key issues related to the efficient operation of a network of
charging stations.Comment: Published in IEEE Journal on Selected Areas in Communications July
201
GREENET - An Early Stage Training Network in Enabling Technologies for Green Radio
International audienceIn this paper, we describe GREENET (an early stage training network in enabling technologies for green radio), which is a new project recently funded by the European Commission under the auspices of the 2010 Marie Curie People Programme. Through the recruitment and personalized training of 17 Early Stage Researchers (ESRs), in GREENET we are committed to the development of new disruptive technologies to address all aspects of energy efficiency in wireless networks, from the user devices to the core network infrastructure, along with the ways the devices and equipment interact with one another. Novel techniques at the physical, link, and network layers to reduce the energy consumption and carbon footprint of 4G devices will be investigated, such as Spatial Modulation (SM) for Multiple-Input-Multiple-Output (MIMO) systems, Cooperative Automatic Repeat reQuest (C-ARQ) protocols, and Network Coding (NC) for lossy networks. Furthermore, cooperation and cognition paradigms will be exploited as additional assets to improve the energy efficiency of wireless networks with the challenging but indispensable constraint of optimizing the system capacity without degrading the user's Quality-of-Service (QoS)
High‐Performance Bioelectronic Circuits Integrated on Biodegradable and Compostable Substrates with Fully Printed Mask‐Less Organic Electrochemical Transistors
Product traceability system for the sugarenergy industry using blockchain technology.
Information on product characteristics, such as nutritional value, target audience, method of use, the way in which they were produced, absence of pesticides, among others, as well as their traceability and origin of the raw materials used in their production can to add value and help in their commercialization, especially for more demanding markets, which would even be willing to pay more for these products. In relation to traceability, some consumer market niches seek in the certification of origin the desired quality and uniformity, these same groups or others also seek information on sustainability in the production of raw materials and in the production processes. In this sense, computerized systems that facilitate access to this information bring good managerial and commercial returns. Recently, blockchain technology has emerged for recording transactions, which became well known with the advent of cryptocurrencies, but which can be used for a multitude of applications. Due to its security mechanisms, in particular, those related to the immutability of data, it can be very useful for making information available to large consumer audiences, providing confidence and ease of tracking in case of need. For this reason, a technical cooperation agreement between Embrapa, Coplacana and Usina Granelli was signed for the development of a product traceability system for the sugar-energy industry using this technology.Enegep 2022
Effectiveness of neonatal pulse oximetry screening for detection of critical congenital heart disease in daily clinical routine—results from a prospective multicenter study
Pulse oximetry screening (POS) has been proposed as an effective, noninvasive, inexpensive tool allowing earlier diagnosis of critical congenital heart disease (cCHD). Our aim was to test the hypothesis that POS can reduce the diagnostic gap in cCHD in daily clinical routine in the setting of tertiary, secondary and primary care centres. We conducted a prospective multicenter trial in Saxony, Germany. POS was performed in healthy term and post-term newborns at the age of 24–72 h. If an oxygen saturation (SpO2) of ≤95% was measured on lower extremities and confirmed after 1 h, complete clinical examination and echocardiography were performed. POS was defined as false-negative when a diagnosis of cCHD was made after POS in the participating hospitals/at our centre. From July 2006–June 2008, 42,240 newborns from 34 institutions have been included. Seventy-two children were excluded due to prenatal diagnosis (n = 54) or clinical signs of cCHD (n = 18) before POS. Seven hundred ninety-five newborns did not receive POS, mainly due to early discharge after birth (n = 727; 91%). In 41,445 newborns, POS was performed. POS was true positive in 14, false positive in 40, true negative in 41,384 and false negative in four children (three had been excluded for violation of study protocol). Sensitivity, specificity, positive and negative predictive value were 77.78%, 99.90%, 25.93% and 99.99%, respectively. With POS as an adjunct to prenatal diagnosis, physical examination and clinical observation, the percentage of newborns with late diagnosis of cCHD was 4.4%. POS can substantially reduce the postnatal diagnostic gap in cCHD, and false-positive results leading to unnecessary examinations of healthy newborns are rare. POS should be implemented in routine postnatal care
The Achilles Heel of the Trojan Horse Model of HIV-1 trans-Infection
To ensure their survival, microbial pathogens have evolved diverse strategies to subvert host immune defenses. The human retrovirus HIV-1 has been proposed to hijack the natural endocytic function of dendritic cells (DCs) to infect interacting CD4 T cells in a process termed trans-infection. Although DCs can be directly infected by certain strains of HIV-1, productive infection of DCs is not required during trans-infection; instead, DCs capture and internalize infectious HIV-1 virions in vesicles for later transmission to CD4 T cells via vesicular exocytosis across the infectious synapse. This model of sequential endocytosis and exocytosis of intact HIV-1 virions has been dubbed the “Trojan horse” model of HIV-1 trans-infection. While this model gained rapid favor as a strong example of how a pathogen exploits the natural properties of its cellular host, our recent studies challenge this model by showing that the vast majority of virions transmitted in trans originate from the plasma membrane rather than from intracellular vesicles. This review traces the experimental lines of evidence that have contributed to what we view as the “rise and decline” of the Trojan horse model of HIV-1 trans-infection
Tecnologia blockchain para a rastreabilidade da cadeia produtiva sucroalcooleira.
Fundamentos da tecnologia e os smart contracts (contratos inteligentes). Os diferentes tipos de rede blockchain. Blockchain no processo produtivo. Blockchain no agronegócio. Blockchain para rastreabilidade de crédito de descarbonização
HIV and Mature Dendritic Cells: Trojan Exosomes Riding the Trojan Horse?
Exosomes are secreted cellular vesicles that can induce specific CD4+ T cell responses in vivo when they interact with competent antigen-presenting cells like mature dendritic cells (mDCs). The Trojan exosome hypothesis proposes that retroviruses can take advantage of the cell-encoded intercellular vesicle traffic and exosome exchange pathway, moving between cells in the absence of fusion events in search of adequate target cells. Here, we discuss recent data supporting this hypothesis, which further explains how DCs can capture and internalize retroviruses like HIV-1 in the absence of fusion events, leading to the productive infection of interacting CD4+ T cells and contributing to viral spread through a mechanism known as trans-infection. We suggest that HIV-1 can exploit an exosome antigen-dissemination pathway intrinsic to mDCs, allowing viral internalization and final trans-infection of CD4+ T cells. In contrast to previous reports that focus on the ability of immature DCs to capture HIV in the mucosa, this review emphasizes the outstanding role that mature DCs could have promoting trans-infection in the lymph node, underscoring a new potential viral dissemination pathway
Possible in vivo mechanisms involved in photodynamic therapy using tetrapyrrolic macrocycles
Feebly-interacting particles: FIPs 2022 Workshop Report
Particle physics today faces the challenge of explaining the mystery of dark matter, the origin of matter over anti-matter in the Universe, the origin of the neutrino masses, the apparent fine-tuning of the electro-weak scale, and many other aspects of fundamental physics. Perhaps the most striking frontier to emerge in the search for answers involves new physics at mass scales comparable to familiar matter, below the GeV-scale, or even radically below, down to sub-eV scales, and with very feeble interaction strength. New theoretical ideas to address dark matter and other fundamental questions predict such feebly interacting particles (FIPs) at these scales, and indeed, existing data provide numerous hints for such possibility. A vibrant experimental program to discover such physics is under way, guided by a systematic theoretical approach firmly grounded on the underlying principles of the Standard Model. This document represents the report of the FIPs 2022 workshop, held at CERN between the 17 and 21 October 2022 and aims to give an overview of these efforts, their motivations, and the decadal goals that animate the community involved in the search for FIPs
- …
