11,359 research outputs found
Partition Functions of Pure Spinors
We compute partition functions describing multiplicities and charges of
massless and first massive string states of pure-spinor superstrings in
3,4,6,10 dimensions. At the massless level we find a spin-one gauge multiplet
of minimal supersymmetry in d dimensions. At the first massive string level we
find a massive spin-two multiplet. The result is confirmed by a direct analysis
of the BRST cohomology at ghost number one. The central charges of the pure
spinor systems are derived in a manifestly SO(d) covariant way confirming that
the resulting string theories are critical. A critical string model with
N=(2,0) supersymmetry in d=2 is also described.Comment: LaTex, 30 p
Multimetric Supergravities
Making use of integral forms and superfield techniques we propose
supersymmetric extensions of the multimetric gravity Lagrangians in dimensions
one, two, three and four. The supersymmetric interaction potential covariantly
deforms the bosonic one, producing in particular suitable super-symmetric
polynomials generated by the Berezinian. As an additional application of our
formalism we construct supersymmetric multi-Maxwell theories in dimensions
three and four.Comment: 37 pages, Latex2e, no figure
Chemical complexity in astrophysical simulations: optimization and reduction techniques
Chemistry has a key role in the evolution of the interstellar medium (ISM),
so it is highly desirable to follow its evolution in numerical simulations.
However, it may easily dominate the computational cost when applied to large
systems. In this paper we discuss two approaches to reduce these costs: (i)
based on computational strategies, and (ii) based on the properties and on the
topology of the chemical network. The first methods are more robust, while the
second are meant to be giving important information on the structure of large,
complex networks. To this aim we first discuss the numerical solvers for
integrating the system of ordinary differential equations (ODE) associated with
the chemical network. We then propose a buffer method that decreases the
computational time spent in solving the ODE system. We further discuss a
flux-based method that allows one to determine and then cut on the fly the less
active reactions. In addition we also present a topological approach for
selecting the most probable species that will be active during the chemical
evolution, thus gaining information on the chemical network that otherwise
would be difficult to retrieve. This topological technique can also be used as
an a priori reduction method for any size network. We implemented these methods
into a 1D Lagrangian hydrodynamical code to test their effects: both classes
lead to large computational speed-ups, ranging from x2 to x5. We have also
tested some hybrid approaches finding that coupling the flux method with a
buffer strategy gives the best trade-off between robustness and speed-up of
calculations.Comment: accepted for publication in MNRA
Noncommutativity relations in type IIB theory and their supersymmetry
In the present paper we investigate noncommutativity of and -brane
world-volumes embedded in space-time of type IIB superstring theory. Boundary
conditions, which preserve half of the initial supersymmetry, are treated as
canonical constraints. Solving the constraints we obtain original coordinates
in terms of the effective coordinates and momenta. Presence of momenta induces
noncommutativity of string endpoints. We show that noncommutativity relations
are connected by N=1 supersymmetry transformations and noncommutativity
parameters are components of N=1 supermultiplet
- …
