1,634 research outputs found

    Long-term observations of atmospheric CO2 and carbon isotopes at continental sites in Germany

    Get PDF
    A network for regional atmospheric CO2 observations had already been established in Germany by 1972, consisting of 5 stations with basically different characteristics: Westerland, a coastal station at the North Sea, 2 regional stations, Waldhof and Deuselbach, as well as 2 mountain stations, Brotjacklriegel at the eastern border of Germany and Schauinsland in the Black Forest. In addition to CO2 concentration observations, from 1977 onwards quasi-continuous 13CO2 and 14CO2 measurements were performed on samples from the Schauinsland site, and for the short period 1985-1988, 14CO2 measurements were also made on Westerland samples. CO2 data selection based on wind velocity allows for an estimate of the representative continental CO2 level over Europe. The peak-to-peak amplitude of the seasonal cycles and the German sites is shifted if compared to maritime background sites with the concentration maxima occuring already between beginning of February and beginning of April, the minima in August. The long-term mean CO2 increase rate in the last 20 years at Westerland and Schauinsland is 1.49 and 1.48 ppmv yr-1, respectively. The mean delta13C of the seasonal source CO2 at Schauinsland is calculated from unselected delta13C and CO2 data to be -25.1 permil. From the 14C observations in unselected CO2, we derive yearly mean fossil fuel contributions at Westerland of 4 ppmv, and at Schauinsland of only 2.5 ppmv. Based on the sesonality of the fossil fuel CO2 component at Schauinsland and on concurrently observed atmospheric 222Radon activities, we derive a seasonal amplitude of the fossil fuel CO2 source which is higher by a factor of 3 compared to emission estimates for Europe

    ¿Legítima defensa o defensa putativa?

    Get PDF
    Carmen Requejo Conde es la traductora del artícul

    Carbon dioxide and methane in continental Europe: a climatology, and 222Radon-based emission estimates

    Get PDF
    4-year records of gas chromatographic carbon dioxide and methane observations from the continental mountain station Schauninsland in the Black Forest (Germany) are presented. These data are supplemented by continuous atmospheric 222Radon observations. The raw data of CO2 concentration show a large seasonal cycle of about 16ppm with monthly mean wintertime enhancements up to 10ppm higher and summer minima up to 5 ppm lower than the maritime background level in this latitude. These offsets are caused by regional and continental scale CO2 sources and sinks. The mean CH4 concentration at Schauinsland is 31ppb higher than over the Atlantic ocean, due to the European continent acting as a net source of atmospheric CH4 throughout the year. No significant seasonal cylce of methane has been observed. The long term CO2 and CH4 increase rates at Schauinsland are found to be similar to background stations in the northern hemisphere, namely 1.5 ppm CO2/yr and 8 ppb CH4/yr. On the time scale of hours and days, the wintertime concentrations of all three trace gases are highly correlated, the mean ratio of CH4/CO2 is 7.8+/-1.0ppb/ppm. The wintertime monthly mean concentrations offsets relative to the maritime background level show a CH4/CO2 ratio of 6.5+/-1.1 ppb/ppm, thus, not significantly different from the short term ratio. Using the wintertime regressions of CO2 and 222Radon respectively CH4 and 222Radon we estimate winter time CO2 flux densities of 10.4+/-4.3 mmol CO2/m2/hr (from monthly mean offsets) and 6.5+/-2.5 mmol CO2 /m2/hr (from short term fluctuations) and winter time methane flux densities of 0.066+/-0.034 mmol CH4 /m2/hr (from monthly mean offsets) and 0.057 +/-0.022 mmole CH4/m2/hr (from short term fluctuations). These flux estimates are in close agreement to CO2 respectively CH4 emission inventories reported for Germany from statistical data

    “Omics”-Informed drug and biomarker discovery : opportunities, challenges and future perspectives

    Get PDF
    The pharmaceutical industry faces unsustainable program failure despite significant increases in investment. Dwindling discovery pipelines, rapidly expanding R&D budgets and increasing regulatory control, predict significant gaps in the future drug markets. The cumulative duration of discovery from concept to commercialisation is unacceptably lengthy, and adds to the deepening crisis. Existing animal models predicting clinical translations are simplistic, highly reductionist and, therefore, not fit for purpose. The catastrophic consequences of ever-increasing attrition rates are most likely to be felt in the developing world, where resistance acquisition by killer diseases like malaria, tuberculosis and HIV have paced far ahead of new drug discovery. The coming of age of Omics-based applications makes available a formidable technological resource to further expand our knowledge of the complexities of human disease. The standardisation, analysis and comprehensive collation of the “data-heavy” outputs of these sciences are indeed challenging. A renewed focus on increasing reproducibility by understanding inherent biological, methodological, technical and analytical variables is crucial if reliable and useful inferences with potential for translation are to be achieved. The individual Omics sciences—genomics, transcriptomics, proteomics and metabolomics—have the singular advantage of being complimentary for cross validation, and together could potentially enable a much-needed systems biology perspective of the perturbations underlying disease processes. If current adverse trends are to be reversed, it is imperative that a shift in the R&D focus from speed to quality is achieved. In this review, we discuss the potential implications of recent Omics-based advances for the drug development process

    The Schauinsland CO2 record: 30 years of continental observations and their implications for the variability of the European CO2 budget

    Get PDF
    Since 1972, the German Environment Agency (UBA) has been measuring continuously CO2 concentration at Schauinsland station (southwest Germany, 1205 m asl). Because of its vicinity to biogenic and anthropogenic sources and sinks, the Schauinsland CO2 record shows considerably variability. In order to remove these disturbances and derive the large-scale representative "background" CO2 levels for the respective area (southwest Germany) we perform rigorous data selection based on wind speed and time of day. During the past 30 years, the selected CO2 mixing rations increased by 1.47 ppm per year, following the mean trend in midlatitudes of the Northern Hemisphere. The average seasonal cycle (peak-to-peak) amplitude has decreased slightly from 13.8+/-0.6 ppm in the first decade (1972-1981) to 12.8 +/- 0.7 ppm in the last two decades (1982-2001). This is opposite to other northern latitude sites and is attributed to the decrease of fossil fuel CO2 emissions in the catchment area (southwest Germany and France) and its respective change in the seasonal variation. Except for May and June, monthly mean CO2 mixing ratios at Schauinsland are higher by up to 8ppm if compared to marine boundary layer air, mainly as a consequence of fossil fuel CO2 emissions in Europe. The CO2 measurements when combined with continuous 222Rn observations at the same site allow an estimate of the net CO2 flux in the catchment area of Schauinsland: mean seasonal fluxes compare very well with estimates from a process-oriented biosphere model (SIB-2) as well as from an inverse modelling approach (Peylin et al, 2000). Annual CO2 fluxes vary by more than a factor of 2, although atnthropogenic fossil fuel CO2 emissions show interannual variations of only about 10%. The major part of the variability must therefore be associated to interannual changes of biospheric uptake and release, which are on the order of the total fossil fuel emissions in the same area. This has to be taken into account when reliably quantifying and verifying the long-term carbon balance and emission reduction targets in the European Union

    Portfolio Analysis Tool

    Get PDF
    Portfolio Analysis Tool (PAT) is a Web-based, client/server computer program that helps managers of multiple projects funded by different customers to make decisions regarding investments in those projects. PAT facilitates analysis on a macroscopic level, without distraction by parochial concerns or tactical details of individual projects, so that managers decisions can reflect the broad strategy of their organization. PAT is accessible via almost any Web-browser software. Experts in specific projects can contribute to a broad database that managers can use in analyzing the costs and benefits of all projects, but do not have access for modifying criteria for analyzing projects: access for modifying criteria is limited to managers according to levels of administrative privilege. PAT affords flexibility for modifying criteria for particular "focus areas" so as to enable standardization of criteria among similar projects, thereby making it possible to improve assessments without need to rewrite computer code or to rehire experts, and thereby further reducing the cost of maintaining and upgrading computer code. Information in the PAT database and results of PAT analyses can be incorporated into a variety of ready-made or customizable tabular or graphical displays

    Spacecraft camera image registration

    Get PDF
    A system for achieving spacecraft camera (1, 2) image registration comprises a portion external to the spacecraft and an image motion compensation system (IMCS) portion onboard the spacecraft. Within the IMCS, a computer (38) calculates an image registration compensation signal (60) which is sent to the scan control loops (84, 88, 94, 98) of the onboard cameras (1, 2). At the location external to the spacecraft, the long-term orbital and attitude perturbations on the spacecraft are modeled. Coefficients (K, A) from this model are periodically sent to the onboard computer (38) by means of a command unit (39). The coefficients (K, A) take into account observations of stars and landmarks made by the spacecraft cameras (1, 2) themselves. The computer (38) takes as inputs the updated coefficients (K, A) plus synchronization information indicating the mirror position (AZ, EL) of each of the spacecraft cameras (1, 2), operating mode, and starting and stopping status of the scan lines generated by these cameras (1, 2), and generates in response thereto the image registration compensation signal (60). The sources of periodic thermal errors on the spacecraft are discussed. The system is checked by calculating measurement residuals, the difference between the landmark and star locations predicted at the external location and the landmark and star locations as measured by the spacecraft cameras (1, 2)

    Tangential View and Intraoperative Three-Dimensional Fluoroscopy for the Detection of Screw-Misplacements in Volar Plating of Distal Radius Fractures

    Get PDF
    Background: Volar locking plate fixation has become the gold standard in the treatment of unstable distal radius fractures. Juxta-articular screws should be placed as close as possible to the subchondral zone, in an optimized length to buttress the articular surface and address the contralateral cortical bone. On the other hand, intra-articular screw misplacements will promote osteoarthritis, while the penetration of the contralateral bone surface may result in tendon irritations and ruptures. The intraoperative control of fracture reduction and implant positioning is limited in the common postero-anterior and true lateral two-dimensional (2D)-fluoroscopic views. Therefore, additional 2D-fluoroscopic views in different projections and intraoperative three-dimensional (3D) fluoroscopy were recently reported. Nevertheless, their utility has issued controversies. Objectives: The following questions should be answered in this study; 1) Are the additional tangential view and the intraoperative 3D fluoroscopy useful in the clinical routine to detect persistent fracture dislocations and screw misplacements, to prevent revision surgery? 2) Which is the most dangerous plate hole for screw misplacement? Patients and Methods: A total of 48 patients (36 females and 13 males) with 49 unstable distal radius fractures (22 x 23 A; 2 x 23 B, and 25 x 23 C) were treated with a 2.4 mm variable angle LCP Two-Column volar distal radius plate (Synthes GmbH, Oberdorf, Switzerland) during a 10-month period. After final fixation, according to the manufactures' technique guide and control of implant placement in the two common perpendicular 2D-fluoroscopic images (postero-anterior and true lateral), an additional tangential view and intraoperative 3D fluoroscopic scan were performed to control the anatomic fracture reduction and screw placements. Intraoperative revision rates due to screw misplacements (intra-articular or overlength) were evaluated. Additionally, the number of surgeons, time and radiation-exposure, for each step of the operating procedure, were recorded. Results: In the standard 2D-fluoroscopic views (postero-anterior and true lateral projection), 22 screw misplacements of 232 inserted screws were not detected. Based on the additional tangential view, 12 screws were exchanged, followed by further 10 screws after performing the 3D fluoroscopic scan. The most lateral screw position had the highest risk for screw misplacement (accounting for 45.5% of all exchanged screws). The mean number of images for the tangential view was 3 ± 2.5 images. The mean surgical time was extended by 10.02 ± 3.82 minutes for the 3D fluoroscopic scan. An additional radiation exposure of 4.4 ± 4.5seconds, with a dose area product of 39.2 ± 14.5 cGy/cm2 were necessary for the tangential view and 54.4 ± 20.9 seconds with a dose area product of 2.1 ± 2.2 cGy/cm2, for the 3D fluoroscopic scan. Conclusions: We recommend the additional 2D-fluoroscopic tangential view for detection of screw misplacements caused by overlength, with penetration on the dorsal cortical surface of the distal radius, predominantly observed for the most lateral screw position. The use of intraoperative 3D fluoroscopy did not become accepted in our clinical routine, due to the technical demanding and time consuming procedure, with a limited image quality so far

    Satellite camera image navigation

    Get PDF
    Pixels within a satellite camera (1, 2) image are precisely located in terms of latitude and longitude on a celestial body, such as the earth, being imaged. A computer (60) on the earth generates models (40, 50) of the satellite's orbit and attitude, respectively. The orbit model (40) is generated from measurements of stars and landmarks taken by the camera (1, 2), and by range data. The orbit model (40) is an expression of the satellite's latitude and longitude at the subsatellite point, and of the altitude of the satellite, as a function of time, using as coefficients (K) the six Keplerian elements at epoch. The attitude model (50) is based upon star measurements taken by each camera (1, 2). The attitude model (50) is a set of expressions for the deviations in a set of mutually orthogonal reference optical axes (x, y, z) as a function of time, for each camera (1, 2). Measured data is fit into the models (40, 50) using a walking least squares fit algorithm. A transformation computer (66 ) transforms pixel coordinates as telemetered by the camera (1, 2) into earth latitude and longitude coordinates, using the orbit and attitude models (40, 50)

    Range Process Simulation Tool

    Get PDF
    Range Process Simulation Tool (RPST) is a computer program that assists managers in rapidly predicting and quantitatively assessing the operational effects of proposed technological additions to, and/or upgrades of, complex facilities and engineering systems such as the Eastern Test Range. Originally designed for application to space transportation systems, RPST is also suitable for assessing effects of proposed changes in industrial facilities and large organizations. RPST follows a model-based approach that includes finite-capacity schedule analysis and discrete-event process simulation. A component-based, scalable, open architecture makes RPST easily and rapidly tailorable for diverse applications. Specific RPST functions include: (1) definition of analysis objectives and performance metrics; (2) selection of process templates from a processtemplate library; (3) configuration of process models for detailed simulation and schedule analysis; (4) design of operations- analysis experiments; (5) schedule and simulation-based process analysis; and (6) optimization of performance by use of genetic algorithms and simulated annealing. The main benefits afforded by RPST are provision of information that can be used to reduce costs of operation and maintenance, and the capability for affordable, accurate, and reliable prediction and exploration of the consequences of many alternative proposed decisions
    corecore