48,167 research outputs found
Readers, readers, writers and engineers
Extended review of books <i>Knowledge, Power and Learning</i> and <i>Learning, Space and Identity</i>, both ed. Carrie Paechter et al., Paul Chapman Publishing (2001). ISBNs 0-769-6937-3 and 0-7619-6939-X
Managing Research Data: Gravitational Waves
The project which led to this report was funded by JISC in 2010–2011 as part of its
‘Managing Research Data’ programme, to examine the way in which Big Science data
is managed, and produce any recommendations which may be appropriate.
Big science data is different: it comes in large volumes, and it is shared and
exploited in ways which may differ from other disciplines. This project has explored
these differences using as a case-study Gravitational Wave data generated by the LSC,
and has produced recommendations intended to be useful variously to JISC, the funding
council (STFC) and the LSC community.
In Sect. 1 we define what we mean by ‘big science’, describe the overall data
culture there, laying stress on how it necessarily or contingently differs from other
disciplines.
In Sect. 2 we discuss the benefits of a formal data-preservation strategy, and the
cases for open data and for well-preserved data that follow from that. This leads to our
recommendations that, in essence, funders should adopt rather light-touch prescriptions
regarding data preservation planning: normal data management practice, in the areas
under study, corresponds to notably good practice in most other areas, so that the only
change we suggest is to make this planning more formal, which makes it more easily
auditable, and more amenable to constructive criticism.
In Sect. 3 we briefly discuss the LIGO data management plan, and pull together
whatever information is available on the estimation of digital preservation costs.
The report is informed, throughout, by the OAIS reference model for an open
archive. Some of the report’s findings and conclusions were summarised in [1].
See the document history on page 37
Fire extinguishing apparatus having a slidable mass for a penetrator nozzle
A fire extinguishing apparatus for delivering an extinguishing agent through a tarrier surrounding a structure into its interior includes an elongated tubular nozzle body which has a pointed penetrating head carried on one end of the tubular body. A source of extinguishing agent coupled to the opposite end of the tubular body is fed through and passes through passages adjacent the head for delivering the extinguishing agent to the interior of the structure. A slidable mass is carried on the tubular body on a remote end of the tubular body from the penetrating head. By manipulating the slidable mass and bringing such in contact with an abutment the force imparted to the tubular body causes the head to penetrate the structure
Hermetically sealable package for hybrid solid-state electronic devices and the like
A light-weight, inexpensively fabricated, hermetically sealable, repairable package for small electronic or electromechanical units, having multiple connections, is described. A molded ring frame of polyamide-imide plastic (Torlon) is attached along one edge to a base plate formed of a highly heat conducting material, such as aluminum or copper. Bores are placed through a base plate within the area of the edge surface of ring frame which result in an attachment of the ring frame to the base plate during molding. Electrical leads are molded into the ring frame. The leads are L-shaped gold-plated copper wires imbedded within widened portions of the side wall of the ring frame. Within the plastic ring frame wall the leads are bent (typically, though not necessarily at 90 deg) so that they project into the interior volume of the ring frame for connection to the solid state devices
A quantum mechanical approach to establishing the magnetic field orientation from a maser Zeeman profile
Recent comparisons of magnetic field directions derived from maser Zeeman
splitting with those derived from continuum source rotation measures have
prompted new analysis of the propagation of the Zeeman split components, and
the inferred field orientation. In order to do this, we first review differing
electric field polarization conventions used in past studies. With these
clearly and consistently defined, we then show that for a given Zeeman
splitting spectrum, the magnetic field direction is fully determined and
predictable on theoretical grounds: when a magnetic field is oriented away from
the observer, the left-hand circular polarization is observed at higher
frequency and the right-hand polarization at lower frequency. This is
consistent with classical Lorentzian derivations. The consequent interpretation
of recent measurements then raises the possibility of a reversal between the
large-scale field (traced by rotation measures) and the small-scale field
(traced by maser Zeeman splitting).Comment: 10 pages, 5 Figures, accepted for publication in MNRA
On residual finiteness of monoids, their Schützenberger groups and associated actions
RG was supported by an EPSRC Postdoctoral Fellowship EP/E043194/1 held at the University of St Andrews, Scotland.In this paper we discuss connections between the following properties: (RFM) residual finiteness of a monoid M ; (RFSG) residual finiteness of Schützenberger groups of M ; and (RFRL) residual finiteness of the natural actions of M on its Green's R- and L-classes. The general question is whether (RFM) implies (RFSG) and/or (RFRL), and vice versa. We consider these questions in all the possible combinations of the following situations: M is an arbitrary monoid; M is an arbitrary regular monoid; every J-class of M has finitely many R- and L-classes; M has finitely many left and right ideals. In each case we obtain complete answers, which are summarised in a table.PostprintPeer reviewe
TMCalc - A fast code to derive Teff and [Fe/H] for FGK stars
We present a new direct spectroscopic calibration for a fast estimation of
the stellar metallicity [Fe/H]. These calibrations were computed using a large
sample of 451 solar-type stars for which we have precise spectroscopic
parameters derived from high quality spectra. The new [Fe/H] calibration is
based on weak Fe I lines, which are expected to be less dependent on surface
gravity and microturbulence, and require only a pre-determination of the
effective temperature. This temperature can be obtained using a previously
presented line-ratio calibration. We also present a simple code that uses the
calibrations and procedures presented in these works to obtain both the
effective temperature and the [Fe/H] estimate. The code, written in C, is
freely available for the community and may be used as an extension of the ARES
code. We test these calibrations for 582 independent FGK stars. We show that
the code can be used as a precise and fast indicator of the spectroscopic
temperature and metallicity for dwarf FKG stars with effective temperatures
ranging from 4500 K to 6500 K and with [Fe/H] ranging from -0.8 dex to 0.4 dex.Comment: 10 pages, 8 Figures, published in A&
Advanced Very High Resolution Radiometer (AVHRR) data evaluation for use in monitoring vegetation. Volume 1: Channels 1 and 2
Data from the National Oceanic and Atmospheric Administration satellite system (NOAA-6 satellite) were analyzed to study their nonmeteorological uses. A file of charts, graphs, and tables was created form the products generated. It was found that the most useful data lie between pixel numbers 400 and 2000 on a given scan line. The analysis of the generated products indicates that the Gray-McCrary Index can discern vegetation and associated daily and seasonal changes. The solar zenith-angle correction used in previous studies was found to be a useful adjustment to the index. The METSAT system seems best suited for providing large-area analyses of surface features on a daily basis
- …
