4,397 research outputs found
Auditory event-related potentials associated with perceptual reversals of bistable pitch motion
Previous event-related potential (ERP) experiments have consistently identified two components associated with perceptual transitions of bistable visual stimuli, the reversal negativity (RN) and the late positive complex (LPC). The RN (~200ms post-stimulus, bilateral occipital-parietal distribution) is thought to reflect transitions between neural representations that form the moment-to-moment contents of conscious perception, while the LPC (~400ms, central-parietal) is considered an index of post-perceptual processing related to accessing and reporting one’s percept. To explore the generality of these components across sensory modalities, the present experiment utilized a novel bistable auditory stimulus. Pairs of complex tones with ambiguous pitch relationships were presented sequentially while subjects reported whether they perceived the tone pairs as ascending or descending in pitch. ERPs elicited by the tones were compared according to whether perceived pitch motion changed direction or remained the same across successive trials. An auditory RN component (aRN) was evident at ~170ms post-stimulus over bilateral fronto-central scalp locations. An auditory LPC component (aLPC) was evident at subsequent latencies (~350ms, fronto-central distribution). These two components may be auditory analogs of the visual RN and LPC, suggesting functionally equivalent but anatomically distinct processes in auditory versus visual bistable perception
Impact experiments into multiple-mesh targets: Concept development of a lightweight collisional bumper
The utility of multiple-mesh targets as potential lightweight shields to protect spacecraft in low-Earth orbit against collisional damage is explored. Earlier studies revealed that single meshes comminute hypervelocity impactors with efficiencies comparable to contiguous targets. Multiple interaction of projectile fragments with any number of meshes should lead to increased comminution, deceleration, and dispersion of the projectile, such that all debris exiting the mesh stack possesses low specific energies (ergs/sq cm) that would readily be tolerated by many flight systems. The study is conceptually exploring the sensitivity of major variables such as impact velocity, the specific areal mass (g/sq cm) of the total mesh stack (SM), and the separation distance (S) between individual meshes. Most experiments employed five or ten meshes with total SM typically less than 0.5 the specific mass of the impactor, and silicate glass impactors rather than metal projectiles. While projectile comminution increases with increasing impact velocity due to progressively higher shock stresses, encounters with multiple-meshes at low velocity (1-2 km/s) already lead to significant disruption of the glass impactors, with the resulting fragments being additionally decelerated and dispersed by subsequent meshes, and, unlike most contiguous single-plate bumpers, leading to respectable performance at low velocity. Total specific bumper mass must be the subject of careful trade-off studies; relatively massive bumpers will generate too much debris being dislodged from the bumper itself, while exceptionally lightweight designs will not cause sufficient comminution, deceleration, or dispersion of the impactor. Separation distance was found to be a crucial design parameter, as it controls the dispersion of the fragment cloud. Substantial mass savings could result if maximum separation distances were employed. The total mass of debris dislodged by multiple-mesh stacks is modestly smaller than that of single, contiguous-membrane shields. The cumulative surface area of all penetration holes in multiple mesh stacks is an order of magnitude smaller than that in analog multiple-foil shields, suggesting good long-term performance of the mesh designs. Due to different experimental conditions, direct and quantitative comparison with other lightweight shields is not possible at present
Starspot Jitter in Photometry, Astrometry and Radial Velocity Measurements
Analytical relations are derived for the amplitude of astrometric,
photometric and radial velocity perturbations caused by a single rotating spot.
The relative power of the star spot jitter is estimated and compared with the
available data for Ceti and HD 166435, as well as with numerical
simulations for Ceti and the Sun. A Sun-like star inclined at
i=90\degr at 10 pc is predicted to have a RMS jitter of 0.087 \uas in its
astrometric position along the equator, and 0.38 m s in radial
velocities. If the presence of spots due to stellar activity is the ultimate
limiting factor for planet detection, the sensitivity of SIM Lite to Earth-like
planets in habitable zones is about an order of magnitude higher that the
sensitivity of prospective ultra-precise radial velocity observations of nearby
stars.Comment: accepted in ApJ Letters, Nov. 200
Activation of conventional protein kinase C (PKC) is critical in the generation of human neutrophil extracellular traps
BACKGROUND: Activation of NADPH oxidase is required for neutrophil extracellular trap (NET) formation. Protein kinase C (PKC) is an upstream mediator of NADPH oxidase activation and thus likely to have a role in NET formation. METHODS: Pharmacological inhibitors were used to block PKC activity in neutrophils harvested from healthy donor blood. RESULTS: Pan PKC inhibition with Ro-31-8220 (p<0.001), conventional PKC inhibition with Go 6976 (p<0.001) and specific PKCβ inhibition with LY333531 (p<0.01) blocked NET formation in response to PMA. Inhibition of novel and atypical PKC had no effect. LY333531 blocked NET induction by the diacylglycerol analogue OAG (conventional PKC activator) (p<0.001). CONCLUSIONS: Conventional PKCs have a prominent role in NET formation. Furthermore PKCβ is the major isoform implicated in NET formation
Left-handers look before they leap:handedness influences reactivity to novel Tower of Hanoi tasks
A sample of 203 task naïve left- and right-handed participants were asked to complete a combination of the 3- and 4-disk Towers of Hanoi (ToH), manipulating novelty and complexity. Self-reported state anxiety and latency to respond (initiation time) were recorded before each ToH. Novelty had a major effect on initiation time, particularly for left-handers. Left-handers had a longer latency to start and this was significantly longer on the first trial. Irrespective of hand-preference, initiation time reduced on the second trial, however, this was greatest for left-handers. Condition of task did not systematically influence initiation time for right handers, but did for left-handers. State anxiety was influenced by task novelty and complexity in a more complicated way. During the first trial, there was a significant handedness × number of disks interaction with left-handers having significantly higher state anxiety levels before the 3-disk ToH. This suggests that the initial reaction to this task for left-handers was not simply due to perceived difficulty. On their second trial, participants completing a novel ToH had higher state anxiety scores than those completing a repeated version. Overall, left-handers had a larger reduction in their state anxiety across trials. Relating to this, the expected strong positive correlation between state and trait anxiety was absent for left-handed females in their first tower presentation, but appeared on their second. This was driven by low trait anxiety individuals showing a higher state anxiety response in the first (novel) trial, supporting the idea that left-handed females respond to novelty in a way that is not directly a consequence of their trait anxiety. A possible explanation may be stereotype threat influencing the behavior of left-handed females
The Bush Legacy: An Assault on Public Protections
This report shows that attacks on a variety of common-sense regulations over the past eight years have taken a great toll on the United States. Though not intended to serve as a comprehensive record of every anti-regulatory effort by the Bush administration, this report uses clear examples to document a wide range of activity, much of which occurred behind the scenes, away from the eyes of all but the most observant members of the press and the public. The storytelling style of the report, crafted by freelance writer and author Osha Gray Davidson, helps readers begin to understand how much damage has been done under the watch of George W. Bush and his vice president, Richard B. Cheney
Approximation of L\"owdin Orthogonalization to a Spectrally Efficient Orthogonal Overlapping PPM Design for UWB Impulse Radio
In this paper we consider the design of spectrally efficient time-limited
pulses for ultrawideband (UWB) systems using an overlapping pulse position
modulation scheme. For this we investigate an orthogonalization method, which
was developed in 1950 by Per-Olov L\"owdin. Our objective is to obtain a set of
N orthogonal (L\"owdin) pulses, which remain time-limited and spectrally
efficient for UWB systems, from a set of N equidistant translates of a
time-limited optimal spectral designed UWB pulse. We derive an approximate
L\"owdin orthogonalization (ALO) by using circulant approximations for the Gram
matrix to obtain a practical filter implementation. We show that the centered
ALO and L\"owdin pulses converge pointwise to the same Nyquist pulse as N tends
to infinity. The set of translates of the Nyquist pulse forms an orthonormal
basis or the shift-invariant space generated by the initial spectral optimal
pulse. The ALO transform provides a closed-form approximation of the L\"owdin
transform, which can be implemented in an analog fashion without the need of
analog to digital conversions. Furthermore, we investigate the interplay
between the optimization and the orthogonalization procedure by using methods
from the theory of shift-invariant spaces. Finally we develop a connection
between our results and wavelet and frame theory.Comment: 33 pages, 11 figures. Accepted for publication 9 Sep 201
Anxious gambling : anxiety is associated with higher frontal midline theta predicting less risky decisions
In this study, we address the effect of anxiety measured with the State-Trait Anxiety Inventory (STAI) on EEG and risk decisions. We selected 20 high and 20 low anxious participants based on their STAI trait scores in the upper or lower quartile of the norm distribution and implemented a risk game developed in our laboratory. We investigate if high anxious individuals exert more cognitive control, reflected in higher frontal midline theta (FMT) power when they make a risky decision, and if they act less risky compared to low anxious individuals. Participants played a risk game while we recorded their brain responses via EEG. High anxious participants played less risky compared to low anxious participants. Further, high anxious participants showed higher FMT power immediately before they chose one of two risk options, suggesting higher cognitive control during the decision time compared to low anxious participants. Via a mediation analysis, we show that the effect of anxiety on risk behavior is fully mediated by FMT power. Further, questionnaire responses revealed that high anxious participants rated risk situations as riskier compared to low anxious participants. We conclude that anxious individuals perceive risky situations as riskier and thus exert more cognitive control during their risk choices, reflected in higher FMT power, which leads to less risky decisions
Detection of emotions in Parkinson's disease using higher order spectral features from brain's electrical activity
Non-motor symptoms in Parkinson's disease (PD) involving cognition and emotion have been progressively receiving more attention in recent times. Electroencephalogram (EEG) signals, being an activity of central nervous system, can reflect the underlying true emotional state of a person. This paper presents a computational framework for classifying PD patients compared to healthy controls (HC) using emotional information from the brain's electrical activity
- …
