2,519 research outputs found
Jeffreys priors for mixture estimation
While Jeffreys priors usually are well-defined for the parameters of mixtures
of distributions, they are not available in closed form. Furthermore, they
often are improper priors. Hence, they have never been used to draw inference
on the mixture parameters. We study in this paper the implementation and the
properties of Jeffreys priors in several mixture settings, show that the
associated posterior distributions most often are improper, and then propose a
noninformative alternative for the analysis of mixtures
Approximate Integrated Likelihood via ABC methods
We propose a novel use of a recent new computational tool for Bayesian
inference, namely the Approximate Bayesian Computation (ABC) methodology. ABC
is a way to handle models for which the likelihood function may be intractable
or even unavailable and/or too costly to evaluate; in particular, we consider
the problem of eliminating the nuisance parameters from a complex statistical
model in order to produce a likelihood function depending on the quantity of
interest only. Given a proper prior for the entire vector parameter, we propose
to approximate the integrated likelihood by the ratio of kernel estimators of
the marginal posterior and prior for the quantity of interest. We present
several examples.Comment: 28 pages, 8 figure
Constraining the Warm Dark Matter Particle Mass through Ultra-Deep UV Luminosity Functions at z=2
We compute the mass function of galactic dark matter halos for different
values of the Warm Dark Matter (WDM) particle mass m_X and compare it with the
abundance of ultra-faint galaxies derived from the deepest UV luminosity
function available so far at redshift z~2. The magnitude limit M_UV=-13 reached
by such observations allows us to probe the WDM mass functions down to scales
close to or smaller than the half-mass mode mass scale ~10^9 M_sun. This
allowed for an efficient discrimination among predictions for different m_X
which turn out to be independent of the star formation efficiency adopted to
associate the observed UV luminosities of galaxies to the corresponding dark
matter masses. Adopting a conservative approach to take into account the
existing theoretical uncertainties in the galaxy halo mass function, we derive
a robust limit m_X>1.8 keV for the mass of thermal relic WDM particles when
comparing with the measured abundance of the faintest galaxies, while m_X>1.5
keV is obtained when we compare with the Schechter fit to the observed
luminosity function. The corresponding lower limit for sterile neutrinos
depends on the modeling of the production mechanism; for instance m_sterile > 4
keV holds for the Shi-Fuller mechanism. We discuss the impact of observational
uncertainties on the above bound on m_X. As a baseline for comparison with
forthcoming observations from the HST Frontier Field, we provide predictions
for the abundance of faint galaxies with M_UV=-13 for different values of m_X
and of the star formation efficiency, valid up to z~4.Comment: 14 pages, 3 figures. Accepted for publication in The Astrophysical
Journa
Jeffreys priors for mixture estimation: properties and alternatives
While Jeffreys priors usually are well-defined for the parameters of mixtures
of distributions, they are not available in closed form. Furthermore, they
often are improper priors. Hence, they have never been used to draw inference
on the mixture parameters. The implementation and the properties of Jeffreys
priors in several mixture settings are studied. It is shown that the associated
posterior distributions most often are improper. Nevertheless, the Jeffreys
prior for the mixture weights conditionally on the parameters of the mixture
components will be shown to have the property of conservativeness with respect
to the number of components, in case of overfitted mixture and it can be
therefore used as a default priors in this context.Comment: arXiv admin note: substantial text overlap with arXiv:1511.0314
A high space density of L* Active Galactic Nuclei at z~4 in the COSMOS field
Identifying the source population of ionizing radiation, responsible for the
reionization of the universe, is currently a hotly debated subject with
conflicting results. Studies of faint, high-redshift star-forming galaxies, in
most cases, fail to detect enough escaping ionizing radiation to sustain the
process. Recently, the capacity of bright quasi-stellar objects to ionize their
surrounding medium has been confirmed also for faint active galactic nuclei
(AGNs), which were found to display an escaping fraction of ~74% at z~4. Such
levels of escaping radiation could sustain the required UV background, given
the number density of faint AGNs is adequate. Thus, it is mandatory to
accurately measure the luminosity function of faint AGNs (L~L*) in the same
redshift range. For this reason we have conducted a spectroscopic survey, using
the wide field spectrograph IMACS at the 6.5m Baade Telescope, to determine the
nature of our sample of faint AGN candidates in the COSMOS field. This sample
was assembled using photometric redshifts, color, and X-ray information. We
ended up with 16 spectroscopically confirmed AGNs at 3.6<z<4.2 down to a
magnitude of i=23.0 for an area of 1.73 deg. This leads to an AGN
space density of ~1.6 (corrected) at z~4 for an
absolute magnitude of M=-23.5. This is higher than previous
measurements and seems to indicate that AGNs could make a substantial
contribution to the ionizing background at z~4. Assuming that AGN physical
parameters remain unchanged at higher redshifts and fainter luminosities, these
sources could be regarded as the main drivers of cosmic reionization.Comment: 10 pages, 3 figures, accepted for publication by Ap
- …
