23,011 research outputs found
Hadronization via Coalescence
We review the quark coalescence model for hadronization in relativistic heavy
ion collisions and show how it can explain the observed large baryon to meson
ratio at intermediate transverse momentum and scaling of the elliptic flows of
identified hadrons. We also show its predictions on higher-order anisotropic
flows and discuss how quark coalescence applied to open- and hidden-charm
mesons can give insight to charm quark interactions in the quark-gluon plasma
and production in heavy ion collisions.Comment: 6 pages, 4 figures, Proceedings of 20th Winter Workshop on Nuclear
Dynamics, Trelawny Beach, Jamaica, March 15--20, 200
Safe discontinuation of nilotinib in a patient with chronic myeloid leukemia: a case report
Case presentation. We report the case of a 64-year-old Caucasian man diagnosed with chronic-phase chronic myeloid leukemia in April 2005. After 4 years of treatment with imatinib, he became intolerant to the drug and was switched to nilotinib. Two years later, he decided to stop nilotinib. Undetectable molecular response persisted for 30 months after discontinuation of the drug.
Introduction. Although there is a considerable amount of data in the literature on safe discontinuation of first-generation tyrosine kinase inhibitor therapy in patients with chronic myeloid leukemia, little is known about discontinuation of second-generation tyrosine kinase inhibitor therapy. Most previous studies have been focused on dasatinib, and the few cases of nilotinib withdrawal that have been reported had a median follow-up of 12 months. To the best of our knowledge, the present report is the first to describe nilotinib withdrawal with 30 months of follow-up.
Conclusion: Our present case suggests that nilotinib withdrawal is safe for patients with chronic myeloid leukemia who achieve a stable undetectable molecular response. Our patient was homozygous for killer immunoglobulin-like receptor haplotype A, previously reported to be a promising immunogenetic marker for undetectable molecular response. We recommend additional studies to investigate patient immunogenetic profiles and their potential role in complete response to therap
Reaction Dynamics with Exotic Beams
We review the new possibilities offered by the reaction dynamics of
asymmetric heavy ion collisions, using stable and unstable beams. We show that
it represents a rather unique tool to probe regions of highly Asymmetric
Nuclear Matter () in compressed as well as dilute phases, and to test the
in-medium isovector interaction for high momentum nucleons. The focus is on a
detailed study of the symmetry term of the nuclear Equation of State () in
regions far away from saturation conditions but always under laboratory
controlled conditions.
Thermodynamic properties of are surveyed starting from nonrelativistic
and relativistic effective interactions. In the relativistic case the role of
the isovector scalar -meson is stressed. The qualitative new features
of the liquid-gas phase transition, "diffusive" instability and isospin
distillation, are discussed. The results of ab-initio simulations of n-rich,
n-poor, heavy ion collisions, using stochastic isospin dependent transport
equations, are analysed as a function of beam energy and centrality. The
isospin dynamics plays an important role in all steps of the reaction, from
prompt nucleon emissions to the final fragments. The isospin diffusion is also
of large interest, due to the interplay of asymmetry and density gradients. In
relativistic collisions, the possibility of a direct study of the covariant
structure of the effective nucleon interaction is shown. Results are discussed
for particle production, collective flows and iso-transparency.
Perspectives of further developments of the field, in theory as well as in
experiment, are presented.Comment: 167+5 pages, 77 figures, general revie
Transport properties of isospin effective mass splitting
We investigate in detail the momentum dependence () of the effective in
medium Nucleon-Nucleon () interaction in the isovector channel. We focus
the discussion on transport properties of the expected neutron-proton ()
effective mass splitting at high isospin density. We look at observable effects
from collective flows in Heavy Ion Collisions () of charge asymmetric
nuclei at intermediate energies. Using microscopic kinetic equation simulations
nucleon transverse and elliptic collective flows in collisions are
evaluated. In spite of the reduced charge asymmetry of the interacting system
interesting effects are revealed. Good observables, particularly
sensitive to the -mass splitting, appear to be the differences between
neutron and proton flows. The importance of more exclusive measurements, with a
selection of different bins of the transverse momenta () of the emitted
particles, is stressed. In more inclusive data a compensation can be expected
from different -contributions, due to the microscopic
structure of the nuclear mean field in asymmetric matter.Comment: 18 pages, 11 figure
Asymptotic robustness of Kelly's GLRT and Adaptive Matched Filter detector under model misspecification
A fundamental assumption underling any Hypothesis Testing (HT) problem is
that the available data follow the parametric model assumed to derive the test
statistic. Nevertheless, a perfect match between the true and the assumed data
models cannot be achieved in many practical applications. In all these cases,
it is advisable to use a robust decision test, i.e. a test whose statistic
preserves (at least asymptotically) the same probability density function (pdf)
for a suitable set of possible input data models under the null hypothesis.
Building upon the seminal work of Kent (1982), in this paper we investigate the
impact of the model mismatch in a recurring HT problem in radar signal
processing applications: testing the mean of a set of Complex Elliptically
Symmetric (CES) distributed random vectors under a possible misspecified,
Gaussian data model. In particular, by using this general misspecified
framework, a new look to two popular detectors, the Kelly's Generalized
Likelihood Ration Test (GLRT) and the Adaptive Matched Filter (AMF), is
provided and their robustness properties investigated.Comment: ISI World Statistics Congress 2017 (ISI2017), Marrakech, Morocco,
16-21 July 201
Impact of temperature dependence of the energy loss on jet quenching observables
The quenching of jets (particles with ) in
ultra-relativistic heavy-ion collisions has been one of the main prediction and
discovery at RHIC. We have studied, by a simple jet quenching modeling, the
correlation between different observables like the nuclear modification factor
\Rapt, the elliptic flow and the ratio of quark to gluon suppression
. We show that the relation among these
observables is strongly affected by the temperature dependence of the energy
loss. In particular the large and and the nearly equal \Rapt of quarks
and gluons can be accounted for only if the energy loss occurs mainly around
the temperature and the flavour conversion is significant.Finally we
point out that the efficency in the conversion of the space eccentricity into
the momentum one () results to be quite smaller respect to the one coming
from elastic scatterings in a fluid with a viscosity to entropy density ratio
.Comment: 7 pages, 8 figures, Workshop WISH 201
Probing the Nuclear Symmetry Energy with Heavy Ion Collisions
Heavy Ion Collisions (HIC) represent a unique tool to probe the in-medium
nuclear interaction in regions away from saturation. In this report we present
a selection of new reaction observables in dissipative collisions particularly
sensitive to the symmetry term of the nuclear Equation of State (). We
will first discuss the Isospin Equilibration Dynamics. At low energies this
manifests via the recently observed Dynamical Dipole Radiation, due to a
collective neutron-proton oscillation with the symmetry term acting as a
restoring force. At higher beam energies Iso-EoS effects will be seen in an
Isospin Diffusion mechanism, via Imbalance Ratio Measurements, in particular
from correlations to the total kinetic energy loss. For fragmentation reactions
in central events we suggest to look at the coupling between isospin
distillation and radial flow. In Neck Fragmentation reactions important Iso-EoS
information can be obtained from fragment isospin content, velocity and
alignement correlations. The high density symmetry term can be probed from
isospin effects on heavy ion reactions at relativistic energies (few AGeV
range), in particular for high transverse momentum selections of the reaction
products. Rather isospin sensitive observables are proposed from
nucleon/cluster emissions, collective flows and meson production. The
possibility to shed light on the controversial neutron/proton effective mass
splitting in asymmetric matter is also suggested.
A large symmetry repulsion at high baryon density will also lead to an
"earlier" hadron-deconfinement transition in n-rich matter. The binodal
transition line of the (T,\rho_B) diagram is lowered to a region accessible
through heavy ion collisions in the energy range of the new planned facilities,
e.g. the FAIR/NICA projects. Some observable effects of the formation of a
Mixed Phase are suggested, in particular a Neutron Trapping mechanism. The
dependence of the results on a suitable treatment of the isovector part of the
interaction in effective QCD Lagrangian approaches is critically discussed. We
stress the interest of this study in nuclear astrophysics, in particular for
supernovae explosions and neutron star structure, where the knowledge of the
Iso-EoS is important at low as well as at high baryon density.Comment: 52 pages, 28 figures, topical review submitted to J. Phys. G: Nucl.
Phys (IOP Latex
Anisotropies in momentum space at finite Shear Viscosity in ultrarelativistic heavy-ion collisions
Within a parton cascade we investigate the dependence of anisotropies in
momentum space, namely the elliptic flow and the
, on both the finite shear viscosity and the
freeze-out (f.o.) dynamics at the RHIC energy of 200 AGeV. In particular it is
discussed the impact of the f.o. dynamics looking at two different procedures:
switching-off the collisions when the energy density goes below a fixed value
or reducing the cross section according to the increase in from a QGP
phase to a hadronic one. We address the relation between the scaling of
with the eccentricity and with the integrated elliptic
flow. We show that the breaking of the scaling is not
coming mainly from the finite but from the f.o. dynamics and that the
is weakly dependent on the f.o. scheme. On the other hand the
is found to be much more dependent on both the and the f.o.
dynamics and hence is indicated to put better constraints on the properties of
the QGP. A first semi-quantitative analysis show that both and
(with the smooth f.o.) consistently indicate a plasma with .Comment: 7 pages. Proceedings of the International School of Nuclear Physics
in Erice, Sicily, to appear in Progress in Particle and Nuclear Physic
- …
