2,380 research outputs found
Deactivation of gold(I) catalysts in the presence of thiols and amines – characterisation and catalysis
Gold(I)-Catalysed Direct Thioetherifications Using Allylic Alcohols: an Experimental and Computational Study
A gold(I)-catalysed direct thioetherification reaction between allylic alcohols and thiols is presented. The reaction is generally highly regioselective (S(N)2′). This dehydrative allylation procedure is very mild and atom economical, producing only water as the by-product and avoiding any unnecessary waste/steps associated with installing a leaving or activating group on the substrate. Computational studies are presented to gain insight into the mechanism of the reaction. Calculations indicate that the regioselectivity is under equilibrium control and is ultimately dictated by the thermodynamic stability of the products
Higgs for Graviton: Simple and Elegant Solution
A Higgs mechanism for gravity is presented, where four scalars with global
Lorentz symmetry are employed. We show that in the broken symmetry phase a
graviton absorbs all scalars and become massive spin 2 particle with five
degrees of freedom. The resulting theory is unitary and free of ghosts.Comment: 8 pages, References added. The decoupling of ghost state is analyzed
in detail
Loop lessons from Wilson loops in N=4 supersymmetric Yang-Mills theory
N=4 supersymmetric Yang-Mills theory exhibits a rather surprising duality of
Wilson-loop vacuum expectation values and scattering amplitudes. In this paper,
we investigate this correspondence at the diagram level. We find that one-loop
triangles, one-loop boxes, and two-loop diagonal boxes can be cast as simple
one- and two- parametric integrals over a single propagator in configuration
space. We observe that the two-loop Wilson-loop "hard-diagram" corresponds to a
four-loop hexagon Feynman diagram. Guided by the diagrammatic correspondence of
the configuration-space propagator and loop Feynman diagrams, we derive Feynman
parameterizations of complicated planar and non-planar Feynman diagrams which
simplify their evaluation. For illustration, we compute numerically a four-loop
hexagon scalar Feynman diagram.Comment: 20 pages, many figures. Two references added. Published versio
Functional diversity of marine ecosystems after the Late Permian mass extinction event
Article can be accessed from http://www.nature.com/ngeo/journal/v7/n3/full/ngeo2079.htmlThe Late Permian mass extinction event was the most severe such crisis of the past 500 million years and occurred during an episode of global warming. It is assumed to have had significant ecological impact, but its effects on marine ecosystem functioning are unknown and the patterns of marine recovery are debated. We analysed the fossil occurrences of all known Permian-Triassic benthic marine genera and assigned each to a functional group based on their inferred life habit. We show that despite the selective extinction of 62-74% of marine genera there was no significant loss of functional diversity at the global scale, and only one novel mode of life originated in the extinction aftermath. Early Triassic marine ecosystems were not as ecologically depauperate as widely assumed, which explains the absence of a Cambrian-style Triassic radiation in higher taxa. Functional diversity was, however, significantly reduced in particular regions and habitats, such as tropical reefs, and at these scales recovery varied spatially and temporally, probably driven by migration of surviving groups. Marine ecosystems did not return to their pre-extinction state, however, and radiation of previously subordinate groups such as motile, epifaunal grazers led to greater functional evenness by the Middle Triassic
A Close Nuclear Black Hole Pair in the Spiral Galaxy NGC 3393
The current picture of galaxy evolution advocates co-evolution of galaxies
and their nuclear massive black holes (MBHs), through accretion and merging.
Quasar pairs (6,000-300,000 light-years separation) exemplify the first stages
of this gravitational interaction. The final stages, through binary MBHs and
final collapse with gravitational wave emission, are consistent with the
sub-light-year separation MBHs inferred from optical spectra and
light-variability of two quasars. The double active nuclei of few nearby
galaxies with disrupted morphology and intense star formation (e.g., NGC 6240
and Mkn 463; ~2,400 and ~12,000 light-years separation respectively)
demonstrate the importance of major mergers of equal mass spirals in this
evolution, leading to an elliptical galaxy, as in the case of the double radio
nucleus (~15 light-years separation) elliptical 0402+379. Minor mergers of
galaxies with a smaller companion should be a more common occurrence, evolving
into spiral galaxies with active MBH pairs, but have hitherto not been seen.
Here we report the presence of two active MBHs, separated by ~430 light-years,
in the Seyfert galaxy NGC 3393. The regular spiral morphology and predominantly
old circum-nuclear stellar population of this galaxy, and the closeness of the
MBHs embedded in the bulge, suggest the result of minor merger evolution.Comment: Preprint (not final) version of a paper to appear in Natur
On Non-Linear Actions for Massive Gravity
In this work we present a systematic construction of the potentially
ghost-free non-linear massive gravity actions. The most general action can be
regarded as a 2-parameter deformation of a minimal massive action. Further
extensions vanish in 4 dimensions. The general mass term is constructed in
terms of a "deformed" determinant from which this property can clearly be seen.
In addition, our formulation identifies non-dynamical terms that appear in
previous constructions and which do not contribute to the equations of motion.
We elaborate on the formal structure of these theories as well as some of their
implications.Comment: v3: 22 pages, minor comments added, version to appear in JHE
- …
