8,870 research outputs found
A Meta-Analysis of Genome-Wide Association Scans Identifies IL18RAP, PTPN2, TAGAP, and PUS10 As Shared Risk Loci for Crohn's Disease and Celiac Disease
This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
A novel pathway producing dimethylsulphide in bacteria is widespread in soil environments
The volatile compound dimethylsulphide (DMS) is important in climate regulation, the sulphur cycle and signalling to higher organisms. Microbial catabolism of the marine osmolyte dimethylsulphoniopropionate (DMSP) is thought to be the major biological process generating DMS. Here we report the discovery and characterisation of the first gene for DMSP-independent DMS production in any bacterium. This gene, mddA, encodes a methyltransferase that methylates methanethiol (MeSH) and generates DMS. MddA functions in many taxonomically diverse bacteria including sediment-dwelling pseudomonads, nitrogen-fixing bradyrhizobia and cyanobacteria, and mycobacteria, including the pathogen Mycobacterium tuberculosis. The mddA gene is present in metagenomes from varied environments, being particularly abundant in soil environments, where it is predicted to occur in up to 76% of bacteria. This novel pathway may significantly contribute to global DMS emissions, especially in terrestrial environments, and could represent a shift from the notion that DMSP is the only significant precursor of DMS
Estimation of Dietary Iron Bioavailability from Food Iron Intake and Iron Status
Currently there are no satisfactory methods for estimating dietary iron absorption (bioavailability) at a population level, but this is essential for deriving dietary reference values using the factorial approach. The aim of this work was to develop a novel approach for estimating dietary iron absorption using a population sample from a sub-section of the UK National Diet and Nutrition Survey (NDNS). Data were analyzed in 873 subjects from the 2000–2001 adult cohort of the NDNS, for whom both dietary intake data and hematological measures (hemoglobin and serum ferritin (SF) concentrations) were available. There were 495 men aged 19–64 y (mean age 42.7±12.1 y) and 378 pre-menopausal women (mean age 35.7±8.2 y). Individual dietary iron requirements were estimated using the Institute of Medicine calculations. A full probability approach was then applied to estimate the prevalence of dietary intakes that were insufficient to meet the needs of the men and women separately, based on their estimated daily iron intake and a series of absorption values ranging from 1–40%. The prevalence of SF concentrations below selected cut-off values (indicating that absorption was not high enough to maintain iron stores) was derived from individual SF concentrations. An estimate of dietary iron absorption required to maintain specified SF values was then calculated by matching the observed prevalence of insufficiency with the prevalence predicted for the series of absorption estimates. Mean daily dietary iron intakes were 13.5 mg for men and 9.8 mg for women. Mean calculated dietary absorption was 8% in men (50th percentile for SF 85 µg/L) and 17% in women (50th percentile for SF 38 µg/L). At a ferritin level of 45 µg/L estimated absorption was similar in men (14%) and women (13%). This new method can be used to calculate dietary iron absorption at a population level using data describing total iron intake and SF concentration
The holographic principle
There is strong evidence that the area of any surface limits the information
content of adjacent spacetime regions, at 10^(69) bits per square meter. We
review the developments that have led to the recognition of this entropy bound,
placing special emphasis on the quantum properties of black holes. The
construction of light-sheets, which associate relevant spacetime regions to any
given surface, is discussed in detail. We explain how the bound is tested and
demonstrate its validity in a wide range of examples.
A universal relation between geometry and information is thus uncovered. It
has yet to be explained. The holographic principle asserts that its origin must
lie in the number of fundamental degrees of freedom involved in a unified
description of spacetime and matter. It must be manifest in an underlying
quantum theory of gravity. We survey some successes and challenges in
implementing the holographic principle.Comment: 52 pages, 10 figures, invited review for Rev. Mod. Phys; v2:
reference adde
Significance of herpesvirus immediate early gene expression in cellular immunity to cytomegalovirus infection
Interstitial pneumonia linked with reactivation of latent human cytomegalovirus due to iatrogenic immunosuppression can be a serious complication of bone marrow transplantation therapy of aplastic anaemia and acute leukaemia1. Cellular immunity plays a critical role in the immune surveillance of inapparent cytomegalovirus infections in man and the mouse1−7. The molecular basis of latency, however, and the interaction between latently or recurrently infected cells and the immune system of the host are poorfy understood. We have detected a so far unknown antigen in the mouse model. This antigen is found in infected cells in association with the expression of the herpesvirus 'immediate early' genes and is recognized by cytolytic T lymphocytes (CTL)8. We now demonstrate that an unexpectedly high proportion of the CTL precursors generated in vivo during acute murine cytomegalovirus infection are specific for cells that selectively synthesize immediate early proteins, indicating an immunodominant role of viral non-structural proteins
Scintillator-based ion beam profiler for diagnosing laser-accelerated ion beams
Next generation intense, short-pulse laser facilities require new high repetition rate diagnostics for the detection of ionizing radiation. We have designed a new scintillator-based ion beam profiler capable of measuring the ion beam transverse profile for a number of discrete energy ranges. The optical response and emission characteristics of four common plastic scintillators has been investigated for a range of proton energies and fluxes. The scintillator light output (for 1 MeV > Ep < 28 MeV) was found to have a non-linear scaling with proton energy but a linear response to incident flux. Initial measurements with a prototype diagnostic have been successful, although further calibration work is required to characterize the total system response and limitations under the high flux, short pulse duration conditions of a typical high intensity laser-plasma interaction
Adenosine-mono-phosphate-activated protein kinase-independent effects of metformin in T cells
The anti-diabetic drug metformin regulates T-cell responses to immune activation and is proposed to function by regulating the energy-stress-sensing adenosine-monophosphate-activated protein kinase (AMPK). However, the molecular details of how metformin controls T cell immune responses have not been studied nor is there any direct evidence that metformin acts on T cells via AMPK. Here, we report that metformin regulates cell growth and proliferation of antigen-activated T cells by modulating the metabolic reprogramming that is required for effector T cell differentiation. Metformin thus inhibits the mammalian target of rapamycin complex I signalling pathway and prevents the expression of the transcription factors c-Myc and hypoxia-inducible factor 1 alpha. However, the inhibitory effects of metformin on T cells did not depend on the expression of AMPK in T cells. Accordingly, experiments with metformin inform about the importance of metabolic reprogramming for T cell immune responses but do not inform about the importance of AMPK
Multiwavelength Observations of Pulsar Wind Nebulae
The extended nebulae formed as pulsar winds expand into their surroundings
provide information about the composition of the winds, the injection history
from the host pulsar, and the material into which the nebulae are expanding.
Observations from across the electromagnetic spectrum provide constraints on
the evolution of the nebulae, the density and composition of the surrounding
ejecta, the geometry of the central engines, and the long-term fate of the
energetic particles produced in these systems. Such observations reveal the
presence of jets and wind termination shocks, time-varying compact emission
structures, shocked supernova ejecta, and newly formed dust. Here I provide a
broad overview of the structure of pulsar wind nebulae, with specific examples
from observations extending from the radio band to very-high-energy gamma-rays
that demonstrate our ability to constrain the history and ultimate fate of the
energy released in the spin-down of young pulsars.Comment: 20 pages, 11 figures. Invited review to appear in Proc. of the
inaugural ICREA Workshop on "The High-Energy Emission from Pulsars and their
Systems" (2010), eds. N. Rea and D. Torres, (Springer Astrophysics and Space
Science series
The entropy of black holes: a primer
After recalling the definition of black holes, and reviewing their energetics
and their classical thermodynamics, one expounds the conjecture of Bekenstein,
attributing an entropy to black holes, and the calculation by Hawking of the
semi-classical radiation spectrum of a black hole, involving a thermal
(Planckian) factor. One then discusses the attempts to interpret the black-hole
entropy as the logarithm of the number of quantum micro-states of a macroscopic
black hole, with particular emphasis on results obtained within string theory.
After mentioning the (technically cleaner, but conceptually more intricate)
case of supersymmetric (BPS) black holes and the corresponding counting of the
degeneracy of Dirichlet-brane systems, one discusses in some detail the
``correspondence'' between massive string states and non-supersymmetric
Schwarzschild black holes.Comment: 51 pages, 4 figures, talk given at the "Poincare seminar" (Paris, 6
December 2003), to appear in Poincare Seminar 2003 (Birkhauser
Validation and Use of 22Na Turnover to Measure Food Intake in Free-Ranging Lizards
As the food intake of free-ranging animals has proved to be difficult to measure by traditional means, the feasibility of using radioactive Na to measure food consumption in a small scincid lizard (Lampropholis guichenoti) was assessed. This technique has previously been used only for several species of mammal. A significant relationship between food intake and Na turnover was found in the laboratory, with Na turnover underestimating intake by 7.6%. The food intake of free-ranging members of a field population was estimated by 22Na turnover to be 9.55, 0.65, 9.39 and 13.75 mg dry weight (day)-1 during autumn, winter, spring and summer respectively. Estimates of assimilated and expended energy from these food intake values agree closely with data reported for other lizards using alternative techniques. This study also describes the technical innovations which were necessary to study lizards weighing less than 1 g; and it suggests that 22Na can provide an easy, reliable and inexpensive means of studying the energetics of many free-living animals
- …
