414 research outputs found
Land-ice elevation changes from photon-counting swath altimetry: first applications over the Antarctic ice sheet
Ocean forced variability of Totten Glacier mass loss
This is the author accepted manuscript. The final version is available from the Geological Society of London via the DOI in this record.A large volume of the East Antarctic Ice Sheet drains through the Totten Glacier (TG) and is thought to be a potential source of substantial global sea level rise over the coming centuries. We show the surface velocity and heightof the floating part of TG, which buttresses the grounded component, have varied substantially over two decades (1989–2011), with variations in surface height strongly anti-correlated with simulated basal melt rates (r=0.70, p<0.05). Coupled glacier/ice-shelf simulations confirm ice flow and thickness respond to both basal melting of the ice shelf and grounding on bed obstacles. We conclude the observed variability of TG is primarily ocean-driven. Ocean warming in this region will lead to enhanced ice-sheet dynamism and loss of upstream grounded ice.This work was supported by, Australian Antarctic Division projects 3103, 4077, 4287 and 4346, National Computing Infrastructure grant m68, NSF grant ANT-0733025, NASA grant NNX09AR52G (Operation Ice Bridge), NERC grant NE/F016646/1, NERC fellowship NE/G012733/2, the Jackson School of Geoscience, the Jet Propulsion Laboratory and the G. Unger Vetlesen Foundation. This research was also supported by the Australian Government’s Cooperative Research Centres Programme through the Antarctic Climate & Ecosystems Cooperative Research Centre. The work is also supported under the Australian Research Councils Special Research Initiative for Antarctic Gateway Partnership SR140300001. Landsat 4 and 7 images courtesy of the U.S. Geological Survey. This is UTIG contribution 2486. Thanks to Benoit Legresy for useful discussions
A domain decomposition preconditioner for a parallel finite element solver on distributed unstructured grids
A number of practical issues associated with the parallel distributed memory solution of elliptic partial differential equations (p.d.e.'s) using unstructured meshes in two dimensions are considered. The first part of the paper describes a parallel mesh generation algorithm which is designed both for efficiency and to produce a well-partitioned, distributed mesh, suitable for the efficient parallel solution of an elliptic p.d.e. The second part of the paper concentrates on parallel domain decomposition preconditioning for the linear algebra problems which arise when solving such a p.d.e. on the unstructured meshes that are generated.
It is demonstrated that by allowing the mesh generator and the p.d.e. solver to share a certain coarse grid structure it is possible to obtain efficient parallel solutions to a number of large problems. Although the work is presented here in a finite element context, the issues of mesh generation and domain decomposition are not of course strictly dependent upon this particular discretization strategy
Two independent methods for mapping the grounding line of an outlet glacier - an example from the Astrolabe Glacier, Terre Adélie, Antarctica
The grounding line is a key element of coastal outlet glaciers, acting on their dynamics. Accurately knowing its position is fundamental for both modelling the glacier dynamics and establishing a benchmark for later change detection. Here we map the grounding line of the Astrolabe Glacier in East Antarctica (66°41' S, 140°05' E), using both hydrostatic and tidal methods. The first method is based on new surface and ice thickness data from which the line of buoyant floatation is found. The second method uses kinematic GPS measurements of the tidal response of the ice surface. By detecting the transitions where the ice starts to move vertically in response to the tidal forcing we determine control points for the grounding line position along GPS profiles. Employing a two-dimensional elastic plate model, we compute the rigid short-term behaviour of the ice plate and estimate the correction required to compare the kinematic GPS control points with the previously determined line of floatation. These two approaches show consistency and lead us to propose a grounding line for the Astrolabe Glacier that significantly deviates from the lines obtained so far from satellite imagery
Dilution of seawater affects the Ca2 + transport in the outer mantle epithelium of crassostrea gigas
Varying salinities of coastal waters are likely to affect the physiology and ion transport capabilities of calcifying marine organisms such as bivalves. To investigate the physiological effect of decreased environmental salinity in bivalves, adult oysters (Crassostrea gigas) were exposed for 14 days to 50% seawater (14) and the effects on mantle ion transport, electrophysiology and the expression of Ca2+ transporters and channels relative to animals maintained in full strength sea water (28) was evaluated. Exposure of oysters to a salinity of 14 decreased the active mantle transepithelial ion transport and specifically affected Ca2+ transfer. Gene expression of the Na+/K+-ATPase and the sarco(endo)plasmic reticulum Ca2+-ATPase was decreased whereas the expression of the T-type voltage-gated Ca channel and the Na+/Ca2+-exchanger increased compared to animals maintained in full SW. The results indicate that decreased environmental salinities will most likely affect not only osmoregulation but also bivalve biomineralization and shell formation.Funding Agency
European Union (EU)
605051
Swedish Mariculture Research Center, SWEMARC, University of Gothenburg
Herbert & Karin Jacobssons Stiftelse
15/h17
Helge Ax:son Johnsons Stiftelse
F18-0128
Portuguese Foundation for Science and Technology
UID/Multi/04326/2019
Portuguese Foundation for Science and Technology
UID/Multi/04326/2019
FCT, under the "Norma Transitoria"
DL57/2016/CP1361/CT0020
DL57/2016/CP1361/CT0011info:eu-repo/semantics/publishedVersio
T-Cell Memory Responses Elicited by Yellow Fever Vaccine are Targeted to Overlapping Epitopes Containing Multiple HLA-I and -II Binding Motifs
The yellow fever vaccines (YF-17D-204 and 17DD) are considered to be among the safest vaccines and the presence of neutralizing antibodies is correlated with protection, although other immune effector mechanisms are known to be involved. T-cell responses are known to play an important role modulating antibody production and the killing of infected cells. However, little is known about the repertoire of T-cell responses elicited by the YF-17DD vaccine in humans. In this report, a library of 653 partially overlapping 15-mer peptides covering the envelope (Env) and nonstructural (NS) proteins 1 to 5 of the vaccine was utilized to perform a comprehensive analysis of the virus-specific CD4+ and CD8+ T-cell responses. The T-cell responses were screened ex-vivo by IFN-γ ELISPOT assays using blood samples from 220 YF-17DD vaccinees collected two months to four years after immunization. Each peptide was tested in 75 to 208 separate individuals of the cohort. The screening identified sixteen immunodominant antigens that elicited activation of circulating memory T-cells in 10% to 33% of the individuals. Biochemical in-vitro binding assays and immunogenetic and immunogenicity studies indicated that each of the sixteen immunogenic 15-mer peptides contained two or more partially overlapping epitopes that could bind with high affinity to molecules of different HLAs. The prevalence of the immunogenicity of a peptide in the cohort was correlated with the diversity of HLA-II alleles that they could bind. These findings suggest that overlapping of HLA binding motifs within a peptide enhances its T-cell immunogenicity and the prevalence of the response in the population. In summary, the results suggests that in addition to factors of the innate immunity, "promiscuous" T-cell antigens might contribute to the high efficacy of the yellow fever vaccines. © 2013 de Melo et al
Direct-to-consumer genetic testing for addiction susceptibility: a premature commercialisation of doubtful validity and value
Genetic research on addiction liability and pharmacogenetic research on treatments for addiction have identified some genetic variants associated with disease risk and treatment. Genetic testing for addiction liability and treatment response has not been used widely in clinical practice because most of the genes identified only modestly predict addiction risk or treatment response. However, many of these genetic tests have been commercialized prematurely and are available direct to the consumer (DTC). The easy availability of DTC tests for addiction liability and lack of regulation over their use raises a number of ethical concerns. Of paramount concern is the limited predictive power and clinical utility of these tests. Many DTC testing companies do not provide the consumer with the necessary genetic counselling to assist them in interpreting and acting on their test results. They may also engage in misleading marketing to entice consumers to purchase their products. Consumers' genetic information may be vulnerable to misuse by third parties, as there are limited standards to protect the privacy of the genetic information. Non-consensual testing and inappropriate testing of minors may also occur. The United States Food and Drug Administration plans to regulate DTC genetic tests. Based on the ethical concerns we discuss below, we believe there is a strong case for regulation of DTC genetic tests for addiction liability and treatment response. We argue that until this occurs, these tests have more potential to cause harm than to contribute to improved prevention and treatment of addiction
First direct detection of an exoplanet by optical interferometry; Astrometry and K-band spectroscopy of HR8799 e
To date, infrared interferometry at best achieved contrast ratios of a few
times on bright targets. GRAVITY, with its dual-field mode, is now
capable of high contrast observations, enabling the direct observation of
exoplanets. We demonstrate the technique on HR8799, a young planetary system
composed of four known giant exoplanets. We used the GRAVITY fringe tracker to
lock the fringes on the central star, and integrated off-axis on the HR8799e
planet situated at 390 mas from the star. Data reduction included
post-processing to remove the flux leaking from the central star and to extract
the coherent flux of the planet. The inferred K band spectrum of the planet has
a spectral resolution of 500. We also derive the astrometric position of the
planet relative to the star with a precision on the order of 100as. The
GRAVITY astrometric measurement disfavors perfectly coplanar stable orbital
solutions. A small adjustment of a few degrees to the orbital inclination of HR
8799 e can resolve the tension, implying that the orbits are close to, but not
strictly coplanar. The spectrum, with a signal-to-noise ratio of
per spectral channel, is compatible with a late-type L brown dwarf. Using
Exo-REM synthetic spectra, we derive a temperature of \,K and a
surface gravity of cm/s. This corresponds to a radius
of and a mass of , which is an independent confirmation of mass estimates from evolutionary
models. Our results demonstrate the power of interferometry for the direct
detection and spectroscopic study of exoplanets at close angular separations
from their stars.Comment: published in A&
HUS and atypical HUS
Hemolytic uremic syndrome (HUS) is a thrombotic microangiopathy characterized by intravascular hemolysis, thrombocytopenia, and acute kidney failure. HUS is usually categorized as typical, caused by Shiga toxin-producing Escherichia coli (STEC) infection, as atypical HUS (aHUS), usually caused by uncontrolled complement activation, or as secondary HUS with a coexisting disease. In recent years, a general understanding of the pathogenetic mechanisms driving HUS has increased. Typical HUS (ie, STEC-HUS) follows a gastrointestinal infection with STEC, whereas aHUS is associated primarily with mutations or autoantibodies leading to dysregulated complement activation. Among the 30% to 50% of patients with HUS who have no detectable complement defect, some have either impaired diacylglycerol kinase epsilon (DGK epsilon) activity, cobalamin C deficiency, or plasminogen deficiency. Some have secondary HUS with a coexisting disease or trigger such as autoimmunity, transplantation, cancer, infection, certain cytotoxic drugs, or pregnancy. The common pathogenetic features in STEC-HUS, aHUS, and secondary HUS are simultaneous damage to endothelial cells, intravascular hemolysis, and activation of platelets leading to a procoagulative state, formation of microthrombi, and tissue damage. In this review, the differences and similarities in the pathogenesis of STEC-HUS, aHUS, and secondaryHUSare discussed. Commonfor the pathogenesis seems to be the vicious cycle of complement activation, endothelial cell damage, platelet activation, and thrombosis. This process can be stopped by therapeutic complement inhibition in most patients with aHUS, but usually not those with a DGK epsilon mutation, and some patients with STEC-HUS or secondary HUS. Therefore, understanding the pathogenesis of the different forms of HUS may prove helpful in clinical practice.Peer reviewe
Identification of Conserved and HLA Promiscuous DENV3 T-Cell Epitopes
Anti-dengue T-cell responses have been implicated in both protection and immunopathology. However, most of the T-cell studies for dengue include few epitopes, with limited knowledge of their inter-serotype variation and the breadth of their human leukocyte antigen (HLA) affinity. In order to expand our knowledge of HLA-restricted dengue epitopes, we screened T-cell responses against 477 overlapping peptides derived from structural and non-structural proteins of the dengue virus serotype 3 (DENV3) by use of HLA class I and II transgenic mice (TgM): A2, A24, B7, DR2, DR3 and DR4. TgM were inoculated with peptides pools and the T-cell immunogenic peptides were identified by ELISPOT. Nine HLA class I and 97 HLA class II novel DENV3 epitopes were identified based on immunogenicity in TgM and their HLA affinity was further confirmed by binding assays analysis. A subset of these epitopes activated memory T-cells from DENV3 immune volunteers and was also capable of priming naïve T-cells, ex vivo, from dengue IgG negative individuals. Analysis of inter- and intra-serotype variation of such an epitope (A02-restricted) allowed us to identify altered peptide ligands not only in DENV3 but also in other DENV serotypes. These studies also characterized the HLA promiscuity of 23 HLA class II epitopes bearing highly conserved sequences, six of which could bind to more than 10 different HLA molecules representing a large percentage of the global population. These epitope data are invaluable to investigate the role of T-cells in dengue immunity/pathogenesis and vaccine design. © 2013 Nascimento et al
- …
