2,202 research outputs found
Electromagnetic wormholes via handlebody constructions
Cloaking devices are prescriptions of electrostatic, optical or
electromagnetic parameter fields (conductivity , index of refraction
, or electric permittivity and magnetic permeability
) which are piecewise smooth on and singular on a
hypersurface , and such that objects in the region enclosed by
are not detectable to external observation by waves. Here, we give related
constructions of invisible tunnels, which allow electromagnetic waves to pass
between possibly distant points, but with only the ends of the tunnels visible
to electromagnetic imaging. Effectively, these change the topology of space
with respect to solutions of Maxwell's equations, corresponding to attaching a
handlebody to . The resulting devices thus function as
electromagnetic wormholes.Comment: 25 pages, 6 figures (some color
Enhancement of near-cloaking. Part II: the Helmholtz equation
The aim of this paper is to extend the method of improving cloaking
structures in the conductivity to scattering problems. We construct very
effective near-cloaking structures for the scattering problem at a fixed
frequency. These new structures are, before using the transformation optics,
layered structures and are designed so that their first scattering coefficients
vanish. Inside the cloaking region, any target has near-zero scattering cross
section for a band of frequencies. We analytically show that our new
construction significantly enhances the cloaking effect for the Helmholtz
equation.Comment: 16pages, 12 fugure
Electromagnetic wormholes and virtual magnetic monopoles
We describe new configurations of electromagnetic (EM) material parameters,
the electric permittivity and magnetic permeability , that
allow one to construct from metamaterials objects that function as invisible
tunnels. These allow EM wave propagation between two points, but the tunnels
and the regions they enclose are not detectable to EM observations. Such
devices function as wormholes with respect to Maxwell's equations and
effectively change the topology of space vis-a-vis EM wave propagation. We
suggest several applications, including devices behaving as virtual magnetic
monopoles.Comment: 4 pages, 3 figure
Transformation media that rotate electromagnetic fields
We suggest a way to manipulate electromagnetic wave by introducing a rotation
mapping of coordinates that can be realized by a specific transformation of
permittivity and permeability of a shell surrounding an enclosed domain. Inside
the enclosed domain, the information from outside will appear as if it comes
from a different angle. Numerical simulations were performed to illustrate
these properties.Comment: 5 pages, 3 figure
Thermistor holder for skin-temperature measurements
Sensing head of thermistor probe is supported in center area of plastic ring which has tabs so that it can be anchored in place by rubber bands or adhesive tapes. Device attaches probes to human subjects practically, reliably, and without affecting characteristics of skin segment being measured
Superantenna made of transformation media
We show how transformation media can make a superantenna that is either
completely invisible or focuses incoming light into a needle-sharp beam. Our
idea is based on representating three-dimensional space as a foliage of sheets
and performing two-dimensional conformal maps on each shee
New system for bathing bedridden patients
Multihead shower facility can be used with minimal patient handling. Waterproof curtain allows patient to bathe with his head out of shower. He can move completely inside shower to wash his face and hair. Main advantage of shower system is time saved in giving bath
Full-wave invisibility of active devices at all frequencies
There has recently been considerable interest in the possibility, both
theoretical and practical, of invisibility (or "cloaking") from observation by
electromagnetic (EM) waves. Here, we prove invisibility, with respect to
solutions of the Helmholtz and Maxwell's equations, for several constructions
of cloaking devices. Previous results have either been on the level of ray
tracing [Le,PSS] or at zero frequency [GLU2,GLU3], but recent numerical [CPSSP]
and experimental [SMJCPSS] work has provided evidence for invisibility at
frequency . We give two basic constructions for cloaking a region
contained in a domain from measurements of Cauchy data of waves at \p
\Omega; we pay particular attention to cloaking not just a passive object, but
an active device within , interpreted as a collection of sources and sinks
or an internal current.Comment: Final revision; to appear in Commun. in Math. Physic
Electromagnetic analysis of arbitrarily shaped pinched carpets
We derive the expressions for the anisotropic heterogeneous tensors of
permittivity and perme- ability associated with two-dimensional and
three-dimensional carpets of an arbitrary shape. In the former case, we map a
segment onto smooth curves whereas in the latter case we map a non convex
region of the plane onto smooth surfaces. Importantly, these carpets display no
singularity of the permeability and permeability tensor components, and this
may lead to some broadband cloaking.Comment: 6 pages, 6 figures, Current Status of Manuscript: 19Apr10
26May10-Sent on appeal;report rcvd 29Dec09 13Apr10-Ed. decision and/or ref.
comments to author;response rcvd 04Dec09 21Dec09-Ed. decision and/or ref.
comments to author;response rcvd 01Dec09-Transferred from PRL to PRA 18Aug09
30Nov09-Ed.decision and/or ref. comments to author;response rcvd 14Aug09 -
Correspondence sent to autho
- …
