798 research outputs found

    Visualisation techniques for users and designers of layout algorithms

    Get PDF
    Visualisation systems consisting of a set of components through which data and interaction commands flow have been explored by a number of researchers. Such hybrid and multistage algorithms can be used to reduce overall computation time, and to provide views of the data that show intermediate results and the outputs of complementary algorithms. In this paper we present work on expanding the range and variety of such components, with two new techniques for analysing and controlling the performance of visualisation processes. While the techniques presented are quite different, they are unified within HIVE: a visualisation system based upon a data-flow model and visual programming. Embodied within this system is a framework for weaving together our visualisation components to better afford insight into data and also deepen understanding of the process of the data's visualisation. We describe the new components and offer short case studies of their application. We demonstrate that both analysts and visualisation designers can benefit from a rich set of components and integrated tools for profiling performance

    The shape of a flexible polymer in a cylindrical pore

    Get PDF
    We calculate the mean end-to-end distance R of a self-avoiding polymer encapsulated in an infinitely long cylinder with radius D. A self-consistent perturbation theory is used to calculate R as a function of D for impenetrable hard walls and soft walls. In both cases, R obeys the predicted scaling behavior in the limit of large and small D. The crossover from the three-dimensional behavior (D→∞) to the fully stretched one-dimensional case (D→0) is nonmonotonic. The minimum value of R is found at D ∼ 0.46RF, where RF is the Flory radius of R at D→∞. The results for soft walls map onto the hard wall case with a larger cylinder radius

    Generalized Erdos Numbers for network analysis

    Get PDF
    In this paper we consider the concept of `closeness' between nodes in a weighted network that can be defined topologically even in the absence of a metric. The Generalized Erd\H{o}s Numbers (GENs) satisfy a number of desirable properties as a measure of topological closeness when nodes share a finite resource between nodes as they are real-valued and non-local, and can be used to create an asymmetric matrix of connectivities. We show that they can be used to define a personalized measure of the importance of nodes in a network with a natural interpretation that leads to a new global measure of centrality and is highly correlated with Page Rank. The relative asymmetry of the GENs (due to their non-metric definition) is linked also to the asymmetry in the mean first passage time between nodes in a random walk, and we use a linearized form of the GENs to develop a continuum model for `closeness' in spatial networks. As an example of their practicality, we deploy them to characterize the structure of static networks and show how it relates to dynamics on networks in such situations as the spread of an epidemic

    Kinetics of Loop Formation in Polymer Chains

    Full text link
    We investigate the kinetics of loop formation in flexible ideal polymer chains (Rouse model), and polymers in good and poor solvents. We show for the Rouse model, using a modification of the theory of Szabo, Schulten, and Schulten, that the time scale for cyclization is τcτ0N2\tau_c\sim \tau_0 N^2 (where τ0\tau_0 is a microscopic time scale and NN is the number of monomers), provided the coupling between the relaxation dynamics of the end-to-end vector and the looping dynamics is taken into account. The resulting analytic expression fits the simulation results accurately when aa, the capture radius for contact formation, exceeds bb, the average distance between two connected beads. Simulations also show that, when a<ba < b, τcNατ\tau_c\sim N^{\alpha_\tau}, where 1.5<ατ21.5<{\alpha_\tau}\le 2 in the range 7<N<2007<N<200 used in the simulations. By using a diffusion coefficient that is dependent on the length scales aa and bb (with a<ba<b), which captures the two-stage mechanism by which looping occurs when a<ba < b, we obtain an analytic expression for τc\tau_c that fits the simulation results well. The kinetics of contact formation between the ends of the chain are profoundly affected when interactions between monomers are taken into account. Remarkably, for N<100N < 100 the values of τc\tau_c decrease by more than two orders of magnitude when the solvent quality changes from good to poor. Fits of the simulation data for τc\tau_c to a power law in NN (τcNατ\tau_c\sim N^{\alpha_\tau}) show that ατ\alpha_\tau varies from about 2.4 in a good solvent to about 1.0 in poor solvents. Loop formation in poor solvents, in which the polymer adopts dense, compact globular conformations, occurs by a reptation-like mechanism of the ends of the chain.Comment: 30 pages, 9 figures. Revised version includes a new figure (8) and minor changes to the tex

    Theoretical Perspectives on Protein Folding

    Full text link
    Understanding how monomeric proteins fold under in vitro conditions is crucial to describing their functions in the cellular context. Significant advances both in theory and experiments have resulted in a conceptual framework for describing the folding mechanisms of globular proteins. The experimental data and theoretical methods have revealed the multifaceted character of proteins. Proteins exhibit universal features that can be determined using only the number of amino acid residues (N) and polymer concepts. The sizes of proteins in the denatured and folded states, cooperativity of the folding transition, dispersions in the melting temperatures at the residue level, and time scales of folding are to a large extent determined by N. The consequences of finite N especially on how individual residues order upon folding depends on the topology of the folded states. Such intricate details can be predicted using the Molecular Transfer Model that combines simulations with measured transfer free energies of protein building blocks from water to the desired concentration of the denaturant. By watching one molecule fold at a time, using single molecule methods, the validity of the theoretically anticipated heterogeneity in the folding routes, and the N-dependent time scales for the three stages in the approach to the native state have been established. Despite the successes of theory, of which only a few examples are documented here, we conclude that much remains to be done to solve the "protein folding problem" in the broadest sense.Comment: 48 pages, 9 figure

    Stretching Homopolymers

    Full text link
    Force induced stretching of polymers is important in a variety of contexts. We have used theory and simulations to describe the response of homopolymers, with NN monomers, to force (ff) in good and poor solvents. In good solvents and for {{sufficiently large}} NN we show, in accord with scaling predictions, that the mean extension along the ff axis f\sim f for small ff, and f2/3\sim f^{{2/3}} (the Pincus regime) for intermediate values of ff. The theoretical predictions for \la Z\ra as a function of ff are in excellent agreement with simulations for N=100 and 1600. However, even with N=1600, the expected Pincus regime is not observed due to the the breakdown of the assumptions in the blob picture for finite NN. {{We predict the Pincus scaling in a good solvent will be observed for N105N\gtrsim 10^5}}. The force-dependent structure factors for a polymer in a poor solvent show that there are a hierarchy of structures, depending on the nature of the solvent. For a weakly hydrophobic polymer, various structures (ideal conformations, self-avoiding chains, globules, and rods) emerge on distinct length scales as ff is varied. A strongly hydrophobic polymer remains globular as long as ff is less than a critical value fcf_c. Above fcf_c, an abrupt first order transition to a rod-like structure occurs. Our predictions can be tested using single molecule experiments.Comment: 24 pages, 7 figure

    Compaction and tensile forces determine the accuracy of folding landscape parameters from single molecule pulling experiments

    Get PDF
    We establish a framework for assessing whether the transition state location of a biopolymer, which can be inferred from single molecule pulling experiments, corresponds to the ensemble of structures that have equal probability of reaching either the folded or unfolded states (Pfold = 0.5). Using results for the forced-unfolding of a RNA hairpin, an exactly soluble model and an analytic theory, we show that Pfold is solely determined by s, an experimentally measurable molecular tensegrity parameter, which is a ratio of the tensile force and a compaction force that stabilizes the folded state. Applications to folding landscapes of DNA hairpins and leucine zipper with two barriers provide a structural interpretation of single molecule experimental data. Our theory can be used to assess whether molecular extension is a good reaction coordinate using measured free energy profiles.Comment: 6 pages, 4 figures, Phys. Rev. Lett. (in press
    corecore