1,287 research outputs found

    Tracking and Data Relay Satellite (TDRS) Orbit Estimation Using an Extended Kalman Filter

    Get PDF
    Alternatives to the Tracking and Data Relay Satellite (TDRS) orbit estimation procedure were studied to develop a technique that both produces more reliable results and is more amenable to automation than the prior procedure. The Earth Observing System (EOS) Terra mission has TDRS ephemeris prediction 3(sigma) requirements of 75 meters in position and 5.5 millimeters per second in velocity over a 1.5-day prediction span. Meeting these requirements sometimes required reruns of the prior orbit determination (OD) process, with manual editing of tracking data to get an acceptable solution. After a study of the available alternatives, the Flight Dynamics Facility (FDF) began using the Real-Time Orbit Determination (RTOD(Registered TradeMark)) Kalman filter program for operational support of TDRSs in February 2007. This extended Kalman filter (EKF) is used for daily support, including within hours after most thrusting, to estimate the spacecraft position, velocity, and solar radiation coefficient of reflectivity (C(sub R)). The tracking data used are from the Bilateration Ranging Transponder System (BRTS), selected TDRS System (TDRSS) User satellite tracking data, and Telemetry, Tracking, and Command (TT&C) data. Degraded filter results right after maneuvers and some momentum unloads provided incentive for a hybrid OD technique. The results of combining EKF strengths with the Goddard Trajectory Determination System (GTDS) Differential Correction (DC) program batch-least-squares solutions, as recommended in a 2005 paper on the chain-bias technique, are also presented

    Polarization mode dispersion compensator field trial and field fiber characterization

    Get PDF
    Two high-PMD long distance routes were characterized and used to test an optical polarization mode dispersion compensator (PMDC) under field conditions. For this trial, 110 km routes with mean PMD values of 25 and 26.5 ps were provisioned with commercial WDM transport equipment and tested for several weeks. The route was comprised of three spans of characterized fiber that followed railroad tracks. We show the temporal variation of the output polarization state and the evolution of first- and second-order PMD spectra over 7 days. The deployment of a variable-length PMDC on these links allowed error-free transmission of an OC-192 signal. Splitting the output to receivers with and without PMDC demonstrated specific PMD events that caused errors in the absence of a PMDC. (C) 2002 Optical Society of America

    Sensitive Room-Temperature Terahertz Detection via Photothermoelectric Effect in Graphene

    Full text link
    Terahertz (THz) radiation has uses from security to medicine; however, sensitive room-temperature detection of THz is notoriously difficult. The hot-electron photothermoelectric effect in graphene is a promising detection mechanism: photoexcited carriers rapidly thermalize due to strong electron-electron interactions, but lose energy to the lattice more slowly. The electron temperature gradient drives electron diffusion, and asymmetry due to local gating or dissimilar contact metals produces a net current via the thermoelectric effect. Here we demonstrate a graphene thermoelectric THz photodetector with sensitivity exceeding 10 V/W (700 V/W) at room temperature and noise equivalent power less than 1100 pW/Hz^1/2 (20 pW/Hz^1/2), referenced to the incident (absorbed) power. This implies a performance which is competitive with the best room-temperature THz detectors for an optimally coupled device, while time-resolved measurements indicate that our graphene detector is eight to nine orders of magnitude faster than those. A simple model of the response, including contact asymmetries (resistance, work function and Fermi-energy pinning) reproduces the qualitative features of the data, and indicates that orders-of-magnitude sensitivity improvements are possible.Comment: Published 07 September 2014 in Nature Nanotechnolog

    Dimensionality and dynamics in the behavior of C. elegans

    Get PDF
    A major challenge in analyzing animal behavior is to discover some underlying simplicity in complex motor actions. Here we show that the space of shapes adopted by the nematode C. elegans is surprisingly low dimensional, with just four dimensions accounting for 95% of the shape variance, and we partially reconstruct "equations of motion" for the dynamics in this space. These dynamics have multiple attractors, and we find that the worm visits these in a rapid and almost completely deterministic response to weak thermal stimuli. Stimulus-dependent correlations among the different modes suggest that one can generate more reliable behaviors by synchronizing stimuli to the state of the worm in shape space. We confirm this prediction, effectively "steering" the worm in real time.Comment: 9 pages, 6 figures, minor correction

    Automatic HDRI generation of dynamic environments

    Full text link
    of the human shapes (inset). (b) HDRI generation using the presented method, HCM is removed using a variance image, VI. (c) HDRI of a dynamic scene (larger image) with LCM (leaves). (d) HDRI after LCM removal using an uncertainty measure, UI. (e, top) VI segmentation. (e, bottom) UI segmentation.

    Requirement Prioritization Decision Factors for Agile Development Environments

    Get PDF
    In an agile development environment, project planners continuously prioritize work tasks so requirements that provide the most value are delivered first. This strategy is based on Value Based Software Engineering principles that different requirements deliver different levels of value and diverse stakeholders view the importance of the value of various requirements differently and thus, will prioritize them differently. However, we found that there are several core values that stakeholders have more agreement in terms of relevancy and importance than others. By knowing these core values, project planners have increased insights as to which requirements should be prioritized higher, hence, hopefully increasing overall stakeholder satisfaction and reducing project risk

    The investigation of interferences in immunoassay

    Get PDF
    Immunoassay procedures have a wide application in clinical medicine and as such are used throughout clinical biochemistry laboratories both for urgent and routine testing. Clinicians and laboratory personnel are often presented with immunoassay results which are inconsistent with clinical findings. Without a high index of suspicion interferences will often not be suspected. Artifactual results can be due to a range of interferences in immunoassays which can include cross reacting substances, heterophile antibodies, autoantibodies and the high dose hook effect. Further, pre-analytical aspects and certain disease states can influence the potential for interference in immunoassays. Practical solutions for investigation of artifactual results in the setting of the routine clinical laboratory are provided
    corecore