29 research outputs found

    Optimizing Outpatient Radiation Oncology Consult Workflow by Using Time-Driven Activity-Based Costing: Efficiency and Financial Impacts

    Get PDF
    PURPOSE: Clinical efficiency is a key component of value-based health care. Our objective here was to identify workflow inefficiencies by using time-driven activity-based costing (TDABC) and evaluate the implementation of a new clinical workflow in high-volume outpatient radiation oncology clinics. METHODS: Our quality improvement study was conducted with the Departments of GI, Genitourinary (GU), and Thoracic Radiation Oncology at a large academic cancer center and four community network sites. TDABC was used to create process maps and optimize workflow for outpatient consults. Patient encounter metrics were captured with a real-time status function in the electronic medical record. Time metrics were compared using Mann-Whitney U tests. RESULTS: Individual patient encounter data for 1,328 consults before the intervention and 1,234 afterward across all sections were included. The median overall cycle time was reduced by 21% in GI (19 minutes), 18% in GU (16 minutes), and 12% at the community sites (9 minutes). The median financial savings per consult were 52inUSdollars(USD)fortheGI,52 in US dollars (USD) for the GI, 33 USD for GU, 30USDforthoracic,and30 USD for thoracic, and 42 USD for the community sites. Patient satisfaction surveys (from 127 of 228 patients) showed that 99% of patients reported that their providers spent adequate time with them and 91% reported being seen by a care provider in a timely manner. CONCLUSION: TDABC can effectively identify opportunities to improve clinical efficiency. Implementing workflow changes on the basis of our findings led to substantial reductions in overall encounter cycle times across several departments, as well as high patient satisfaction and significant financial savings

    Breast Cancer

    Full text link

    Proton Therapy for Major Salivary Gland Cancer: Clinical Outcomes

    Full text link
    Abstract Purpose To report clinical outcomes in terms of disease control and toxicity in patients with major salivary gland cancers (SGCs) treated with proton beam therapy. Materials and Methods Clinical and dosimetric characteristics of patients with SGCs treated from August 2011 to February 2020 on an observational, prospective, single-institution protocol were abstracted. Local control and overall survival were calculated by the Kaplan-Meier method. During radiation, weekly assessments of toxicity were obtained, and for patients with ≥ 90 days of follow-up, late toxicity was assessed. Results Seventy-two patients were identified. Median age was 54 years (range, 23-87 years). Sixty-three patients (88%) received postoperative therapy, and nine patients (12%) were treated definitively. Twenty-six patients (36%) received concurrent chemotherapy. Nine patients (12%) had received prior radiation. All (99%) but one patient received unilateral treatment with a median dose of 64 GyRBE (relative biological effectiveness) (interquartile range [IQR], 60-66), and 53 patients (74%) received intensity-modulated proton therapy with either single-field or multifield optimization. The median follow-up time was 30 months. Two-year local control and overall survival rates were 96% (95% confidence interval [CI] 85%-99%) and 89% (95% CI 76%-95%], respectively. Radiation dermatitis was the predominant grade-3 toxicity (seen in 21% [n = 15] of the patients), and grade ≥ 2 mucositis was rare (14%; n = 10 patients). No late-grade ≥ 3 toxicities were reported. Conclusion Proton beam therapy for treatment of major SGCs manifests in low rates of acute mucosal toxicity. In addition, the current data suggest a high rate of local control and minimal late toxicity. </jats:sec
    corecore