4,605 research outputs found
Initial Data for Numerical Relativity
Initial data are the starting point for any numerical simulation. In the case
of numerical relativity, Einstein's equations constrain our choices of these
initial data. We will examine several of the formalisms used for specifying
Cauchy initial data in the 3+1 decomposition of Einstein's equations. We will
then explore how these formalisms have been used in constructing initial data
for spacetimes containing black holes and neutron stars. In the topics
discussed, emphasis is placed on those issues that are important for obtaining
astrophysically realistic initial data for compact binary coalescence.Comment: 50 pages, LaTeX(livrev.cls), Review article for "Living Reviews in
Relativity" (http://www.livingreviews.org/), July 200
Testing a Simplified Version of Einstein's Equations for Numerical Relativity
Solving dynamical problems in general relativity requires the full machinery
of numerical relativity. Wilson has proposed a simpler but approximate scheme
for systems near equilibrium, like binary neutron stars. We test the scheme on
isolated, rapidly rotating, relativistic stars. Since these objects are in
equilibrium, it is crucial that the approximation work well if we are to
believe its predictions for more complicated systems like binaries. Our results
are very encouraging.Comment: 9 pages (RevTeX 3.0 with 6 uuencoded figures), CRSR-107
Measuring eccentricity in binary black-hole initial data
Initial data for evolving black-hole binaries can be constructed via many
techniques, and can represent a wide range of physical scenarios. However,
because of the way that different schemes parameterize the physical aspects of
a configuration, it is not alway clear what a given set of initial data
actually represents. This is especially important for quasiequilibrium data
constructed using the conformal thin-sandwich approach. Most initial-data
studies have focused on identifying data sets that represent binaries in
quasi-circular orbits. In this paper, we consider initial-data sets
representing equal-mass black holes binaries in eccentric orbits. We will show
that effective-potential techniques can be used to calibrate initial data for
black-hole binaries in eccentric orbits. We will also examine several different
approaches, including post-Newtonian diagnostics, for measuring the
eccentricity of an orbit. Finally, we propose the use of the ``Komar-mass
difference'' as a useful, invariant means of parameterizing the eccentricity of
relativistic orbits.Comment: 12 pages, 11 figures, submitted to Physical Review D, revtex
Step size of the rotary proton motor in single FoF1-ATP synthase from a thermoalkaliphilic bacterium by DCO-ALEX FRET
Thermophilic enzymes can operate at higher temperatures but show reduced
activities at room temperature. They are in general more stable during
preparation and, accordingly, are considered to be more rigid in structure.
Crystallization is often easier compared to proteins from bacteria growing at
ambient temperatures, especially for membrane proteins. The ATP-producing
enzyme FoF1-ATP synthase from thermoalkaliphilic Caldalkalibacillus thermarum
strain TA2.A1 is driven by a Fo motor consisting of a ring of 13 c-subunits. We
applied a single-molecule F\"orster resonance energy transfer (FRET) approach
using duty cycle-optimized alternating laser excitation (DCO-ALEX) to monitor
the expected 13-stepped rotary Fo motor at work. New FRET transition histograms
were developed to identify the smaller step sizes compared to the 10-stepped Fo
motor of the Escherichia coli enzyme. Dwell time analysis revealed the
temperature and the LDAO dependence of the Fo motor activity on the single
molecule level. Back-and-forth stepping of the Fo motor occurs fast indicating
a high flexibility in the membrane part of this thermophilic enzyme.Comment: 14 pages, 7 figure
Quasi-circular Orbits for Spinning Binary Black Holes
Using an effective potential method we examine binary black holes where the
individual holes carry spin. We trace out sequences of quasi-circular orbits
and locate the innermost stable circular orbit as a function of spin. At large
separations, the sequences of quasi-circular orbits match well with
post-Newtonian expansions, although a clear signature of the simplifying
assumption of conformal flatness is seen. The position of the ISCO is found to
be strongly dependent on the magnitude of the spin on each black hole. At close
separations of the holes, the effective potential method breaks down. In all
cases where an ISCO could be determined, we found that an apparent horizon
encompassing both holes forms for separations well inside the ISCO.
Nevertheless, we argue that the formation of a common horizon is still
associated with the breakdown of the effective potential method.Comment: 13 pages, 10 figures, submitted to PR
Assessment of the effectiveness of head only and back-of-the-head electrical stunning of chickens
The study assesses the effectiveness of reversible head-only and back-of-the-head electrical stunning of chickens using 130–950 mA per bird at 50 Hz AC
- …
