687 research outputs found
Safety and physiological effects of two different doses of elosulfase alfa in patients with morquio a syndrome: A randomized, double-blind, pilot study.
The primary treatment outcomes of a phase 2, randomized, double-blind, pilot study evaluating safety, physiological, and pharmacological effects of elosulfase alfa in patients with Morquio A syndrome are herewith presented. Patients aged ≥7 years and able to walk ≥200 m in the 6-min walk test (6MWT) were randomized to elosulfase alfa 2.0 or 4.0 mg/kg/week for 27 weeks. The primary objective was to evaluate the safety of both doses. Secondary objectives were to evaluate effects on endurance (6MWT and 3-min stair climb test [3MSCT]), exercise capacity (cardio-pulmonary exercise test [CPET]), respiratory function, muscle strength, cardiac function, pain, and urine keratan sulfate (uKS) levels, and to determine pharmacokinetic parameters. Twenty-five patients were enrolled (15 randomized to 2.0 mg/kg/week and 10 to 4.0 mg/kg/week). No new or unexpected safety signals were observed. After 24 weeks, there were no improvements versus baseline in the 6MWT, yet numerical improvements were seen in the 3MSCT with 4.0 mg/kg/week. uKS and pharmacokinetic data suggested no linear relationship over the 2.0-4.0 mg/kg dose range. Overall, an abnormal exercise capacity (evaluated in 10 and 5 patients in the 2.0 and 4.0 mg/kg/week groups, respectively), impaired muscle strength, and considerable pain were observed at baseline, and there were trends towards improvements in all domains after treatment. In conclusion, preliminary data of this small study in a Morquio A population with relatively good endurance confirmed the acceptable safety profile of elosulfase alfa and showed a trend of increased exercise capacity and muscle strength and decreased pain
A new fireworm (Amphinomidae) from the Cretaceous of Lebanon identified from three-dimensionally preserved myoanatomy
© 2015 Parry et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. The attached file is the published version of the article
Speckle from phase ordering systems
The statistical properties of coherent radiation scattered from
phase-ordering materials are studied in detail using large-scale computer
simulations and analytic arguments. Specifically, we consider a two-dimensional
model with a nonconserved, scalar order parameter (Model A), quenched through
an order-disorder transition into the two-phase regime. For such systems it is
well established that the standard scaling hypothesis applies, consequently the
average scattering intensity at wavevector _k and time t' is proportional to a
scaling function which depends only on a rescaled time, t ~ |_k|^2 t'. We find
that the simulated intensities are exponentially distributed, with the
time-dependent average well approximated using a scaling function due to Ohta,
Jasnow, and Kawasaki. Considering fluctuations around the average behavior, we
find that the covariance of the scattering intensity for a single wavevector at
two different times is proportional to a scaling function with natural
variables mt = |t_1 - t_2| and pt = (t_1 + t_2)/2. In the asymptotic large-pt
limit this scaling function depends only on z = mt / pt^(1/2). For small values
of z, the scaling function is quadratic, corresponding to highly persistent
behavior of the intensity fluctuations. We empirically establish a connection
between the intensity covariance and the two-time, two-point correlation
function of the order parameter. This connection allows sensitive testing,
either experimental or numerical, of existing theories for two-time
correlations in systems undergoing order-disorder phase transitions. Comparison
between theory and our numerical results requires no adjustable parameters.Comment: 18 pgs RevTeX, to appear in PR
Targeted search for continuous gravitational waves: Bayesian versus maximum-likelihood statistics
We investigate the Bayesian framework for detection of continuous
gravitational waves (GWs) in the context of targeted searches, where the phase
evolution of the GW signal is assumed to be known, while the four amplitude
parameters are unknown. We show that the orthodox maximum-likelihood statistic
(known as F-statistic) can be rediscovered as a Bayes factor with an unphysical
prior in amplitude parameter space. We introduce an alternative detection
statistic ("B-statistic") using the Bayes factor with a more natural amplitude
prior, namely an isotropic probability distribution for the orientation of GW
sources. Monte-Carlo simulations of targeted searches show that the resulting
Bayesian B-statistic is more powerful in the Neyman-Pearson sense (i.e. has a
higher expected detection probability at equal false-alarm probability) than
the frequentist F-statistic.Comment: 12 pages, presented at GWDAW13, to appear in CQ
Searching for a Stochastic Background of Gravitational Waves with LIGO
The Laser Interferometer Gravitational-wave Observatory (LIGO) has performed
the fourth science run, S4, with significantly improved interferometer
sensitivities with respect to previous runs. Using data acquired during this
science run, we place a limit on the amplitude of a stochastic background of
gravitational waves. For a frequency independent spectrum, the new limit is
. This is currently the most sensitive
result in the frequency range 51-150 Hz, with a factor of 13 improvement over
the previous LIGO result. We discuss complementarity of the new result with
other constraints on a stochastic background of gravitational waves, and we
investigate implications of the new result for different models of this
background.Comment: 37 pages, 16 figure
Search for gravitational wave bursts in LIGO's third science run
We report on a search for gravitational wave bursts in data from the three
LIGO interferometric detectors during their third science run. The search
targets subsecond bursts in the frequency range 100-1100 Hz for which no
waveform model is assumed, and has a sensitivity in terms of the
root-sum-square (rss) strain amplitude of hrss ~ 10^{-20} / sqrt(Hz). No
gravitational wave signals were detected in the 8 days of analyzed data.Comment: 12 pages, 6 figures. Amaldi-6 conference proceedings to be published
in Classical and Quantum Gravit
Evolution of speckle during spinodal decomposition
Time-dependent properties of the speckled intensity patterns created by
scattering coherent radiation from materials undergoing spinodal decomposition
are investigated by numerical integration of the Cahn-Hilliard-Cook equation.
For binary systems which obey a local conservation law, the characteristic
domain size is known to grow in time as with n=1/3,
where B is a constant. The intensities of individual speckles are found to be
nonstationary, persistent time series. The two-time intensity covariance at
wave vector can be collapsed onto a scaling function , where and . Both analytically and numerically, the covariance
is found to depend on only through in the
small- limit and in the large-
limit, consistent with a simple theory of moving interfaces that applies to any
universality class described by a scalar order parameter. The speckle-intensity
covariance is numerically demonstrated to be equal to the square of the
two-time structure factor of the scattering material, for which an analytic
scaling function is obtained for large In addition, the two-time,
two-point order-parameter correlation function is found to scale as
, even for quite large
distances . The asymptotic power-law exponent for the autocorrelation
function is found to be , violating an upper bound
conjectured by Fisher and Huse.Comment: RevTex: 11 pages + 12 figures, submitted to PR
Quantum state preparation and macroscopic entanglement in gravitational-wave detectors
Long-baseline laser-interferometer gravitational-wave detectors are operating
at a factor of 10 (in amplitude) above the standard quantum limit (SQL) within
a broad frequency band. Such a low classical noise budget has already allowed
the creation of a controlled 2.7 kg macroscopic oscillator with an effective
eigenfrequency of 150 Hz and an occupation number of 200. This result, along
with the prospect for further improvements, heralds the new possibility of
experimentally probing macroscopic quantum mechanics (MQM) - quantum mechanical
behavior of objects in the realm of everyday experience - using
gravitational-wave detectors. In this paper, we provide the mathematical
foundation for the first step of a MQM experiment: the preparation of a
macroscopic test mass into a nearly minimum-Heisenberg-limited Gaussian quantum
state, which is possible if the interferometer's classical noise beats the SQL
in a broad frequency band. Our formalism, based on Wiener filtering, allows a
straightforward conversion from the classical noise budget of a laser
interferometer, in terms of noise spectra, into the strategy for quantum state
preparation, and the quality of the prepared state. Using this formalism, we
consider how Gaussian entanglement can be built among two macroscopic test
masses, and the performance of the planned Advanced LIGO interferometers in
quantum-state preparation
Improving the sensitivity to gravitational-wave sources by modifying the input-output optics of advanced interferometers
We study frequency dependent (FD) input-output schemes for signal-recycling
interferometers, the baseline design of Advanced LIGO and the current
configuration of GEO 600. Complementary to a recent proposal by Harms et al. to
use FD input squeezing and ordinary homodyne detection, we explore a scheme
which uses ordinary squeezed vacuum, but FD readout. Both schemes, which are
sub-optimal among all possible input-output schemes, provide a global noise
suppression by the power squeeze factor, while being realizable by using
detuned Fabry-Perot cavities as input/output filters. At high frequencies, the
two schemes are shown to be equivalent, while at low frequencies our scheme
gives better performance than that of Harms et al., and is nearly fully
optimal. We then study the sensitivity improvement achievable by these schemes
in Advanced LIGO era (with 30-m filter cavities and current estimates of
filter-mirror losses and thermal noise), for neutron star binary inspirals, and
for narrowband GW sources such as low-mass X-ray binaries and known radio
pulsars. Optical losses are shown to be a major obstacle for the actual
implementation of these techniques in Advanced LIGO. On time scales of
third-generation interferometers, like EURO/LIGO-III (~2012), with
kilometer-scale filter cavities, a signal-recycling interferometer with the FD
readout scheme explored in this paper can have performances comparable to
existing proposals. [abridged]Comment: Figs. 9 and 12 corrected; Appendix added for narrowband data analysi
Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial
Background
Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy
- …
