4,295 research outputs found
The Deformable Mirror Demonstration Mission (DeMi) CubeSat: optomechanical design validation and laboratory calibration
Coronagraphs on future space telescopes will require precise wavefront
correction to detect Earth-like exoplanets near their host stars. High-actuator
count microelectromechanical system (MEMS) deformable mirrors provide wavefront
control with low size, weight, and power. The Deformable Mirror Demonstration
Mission (DeMi) payload will demonstrate a 140 actuator MEMS deformable mirror
(DM) with \SI{5.5}{\micro\meter} maximum stroke. We present the flight
optomechanical design, lab tests of the flight wavefront sensor and wavefront
reconstructor, and simulations of closed-loop control of wavefront aberrations.
We also present the compact flight DM controller, capable of driving up to 192
actuator channels at 0-250V with 14-bit resolution. Two embedded Raspberry Pi 3
compute modules are used for task management and wavefront reconstruction. The
spacecraft is a 6U CubeSat (30 cm x 20 cm x 10 cm) and launch is planned for
2019.Comment: 15 pages, 10 figues. Presented at SPIE Astronomical Telescopes +
Instrumentation, Austin, Texas, US
Nucleotide Frequencies in Human Genome and Fibonacci Numbers
This work presents a mathematical model that establishes an interesting
connection between nucleotide frequencies in human single-stranded DNA and the
famous Fibonacci's numbers. The model relies on two assumptions. First,
Chargaff's second parity rule should be valid, and, second, the nucleotide
frequencies should approach limit values when the number of bases is
sufficiently large. Under these two hypotheses, it is possible to predict the
human nucleotide frequencies with accuracy. It is noteworthy, that the
predicted values are solutions of an optimization problem, which is commonplace
in many nature's phenomena.Comment: 12 pages, 2 figure
An Adaptive Optics Survey of Stellar Variability at the Galactic Center
We present a year adaptive optics (AO) study of stellar
variability and search for eclipsing binaries in the central pc
() of the Milky Way nuclear star cluster. We measure the photometry
of 563 stars using the Keck II NIRC2 imager (-band, ). We achieve a photometric uncertainty floor of (), comparable to the highest precision achieved
in other AO studies. Approximately half of our sample () shows
variability. of known early-type young stars and of
known late-type giants are variable. These variability fractions are higher
than those of other young, massive star populations or late-type giants in
globular clusters, and can be largely explained by two factors. First, our
experiment time baseline is sensitive to long-term intrinsic stellar
variability. Second, the proper motion of stars behind spatial inhomogeneities
in the foreground extinction screen can lead to variability. We recover the two
known Galactic center eclipsing binary systems: IRS 16SW and S4-258 (E60). We
constrain the Galactic center eclipsing binary fraction of known early-type
stars to be at least . We find no evidence of an eclipsing
binary among the young S-stars nor among the young stellar disk members. These
results are consistent with the local OB eclipsing binary fraction. We identify
a new periodic variable, S2-36, with a 39.43 day period. Further observations
are necessary to determine the nature of this source.Comment: 69 pages, 28 figures, 12 tables. Accepted for publication in The
Astrophysical Journa
The InfraRed Imaging Spectrograph (IRIS) for TMT: photometric precision and ghost analysis
The InfraRed Imaging Spectrograph (IRIS) is a first-light instrument for the
Thirty Meter Telescope (TMT) that will be used to sample the corrected adaptive
optics field by NFIRAOS with a near-infrared (0.8 - 2.4 m) imaging camera
and Integral Field Spectrograph (IFS). In order to understand the science case
specifications of the IRIS instrument, we use the IRIS data simulator to
characterize photometric precision and accuracy of the IRIS imager. We present
the results of investigation into the effects of potential ghosting in the IRIS
optical design. Each source in the IRIS imager field of view results in ghost
images on the detector from IRIS's wedge filters, entrance window, and
Atmospheric Dispersion Corrector (ADC) prism. We incorporated each of these
ghosts into the IRIS simulator by simulating an appropriate magnitude point
source at a specified pixel distance, and for the case of the extended ghosts
redistributing flux evenly over the area specified by IRIS's optical design. We
simulate the ghosting impact on the photometric capabilities, and found that
ghosts generally contribute negligible effects on the flux counts for point
sources except for extreme cases where ghosts coalign with a star of
m2 fainter than the ghost source. Lastly, we explore the photometric
precision and accuracy for single sources and crowded field photometry on the
IRIS imager.Comment: SPIE 2018, 14 pages, 14 figures, 4 tables, Proceedings of SPIE
10702-373, Ground-based and Airborne Instrumentation for Astronomy VII,
10702A7 (16 July 2018
The Infrared Imaging Spectrograph (IRIS) for TMT: Data Reduction System
IRIS (InfraRed Imaging Spectrograph) is the diffraction-limited first light
instrument for the Thirty Meter Telescope (TMT) that consists of a
near-infrared (0.84 to 2.4 m) imager and integral field spectrograph
(IFS). The IFS makes use of a lenslet array and slicer for spatial sampling,
which will be able to operate in 100's of different modes, including a
combination of four plate scales from 4 milliarcseconds (mas) to 50 mas with a
large range of filters and gratings. The imager will have a field of view of
3434 arcsec with a plate scale of 4 mas with many selectable
filters. We present the preliminary design of the data reduction system (DRS)
for IRIS that need to address all of these observing modes. Reduction of IRIS
data will have unique challenges since it will provide real-time reduction and
analysis of the imaging and spectroscopic data during observational sequences,
as well as advanced post-processing algorithms. The DRS will support three
basic modes of operation of IRIS; reducing data from the imager, the lenslet
IFS, and slicer IFS. The DRS will be written in Python, making use of
open-source astronomical packages available. In addition to real-time data
reduction, the DRS will utilize real-time visualization tools, providing
astronomers with up-to-date evaluation of the target acquisition and data
quality. The quicklook suite will include visualization tools for 1D, 2D, and
3D raw and reduced images. We discuss the overall requirements of the DRS and
visualization tools, as well as necessary calibration data to achieve optimal
data quality in order to exploit science cases across all cosmic distance
scales.Comment: 13 pages, 2 figures, 6 tables, Proceeding 9913-165 of the SPIE
Astronomical Telescopes + Instrumentation 201
- …
