830 research outputs found
Teaching for learning with technology: a faculty development initiative at a research university
This paper reviews recent literature addressing the state of
technology in higher education as a backdrop for a faculty
development program offered annually at Northwestern. First,
we will present the state of technology related to teaching in
three areas: (1) the varied institutional interest in technology,
(2) the variance in faculty engagement with technology, and (3)
factors that influence faculty acceptance of technology. Next,
we will introduce Northwestern’s response to the need for
faculty development related to technology, the 5-day Teaching
and Learning with Technology workshop. Finally, we will
present data gathered over two years that demonstrates how
pedagogically-driven technology training can enhance teaching
and encourage faculty to embrace technology in teaching to
accomplish pedagogically-based learning objectives
Characterization of neurophysiologic and neurocognitive biomarkers for use in genomic and clinical outcome studies of schizophrenia.
BackgroundEndophenotypes are quantitative, laboratory-based measures representing intermediate links in the pathways between genetic variation and the clinical expression of a disorder. Ideal endophenotypes exhibit deficits in patients, are stable over time and across shifts in psychopathology, and are suitable for repeat testing. Unfortunately, many leading candidate endophenotypes in schizophrenia have not been fully characterized simultaneously in large cohorts of patients and controls across these properties. The objectives of this study were to characterize the extent to which widely-used neurophysiological and neurocognitive endophenotypes are: 1) associated with schizophrenia, 2) stable over time, independent of state-related changes, and 3) free of potential practice/maturation or differential attrition effects in schizophrenia patients (SZ) and nonpsychiatric comparison subjects (NCS). Stability of clinical and functional measures was also assessed.MethodsParticipants (SZ n = 341; NCS n = 205) completed a battery of neurophysiological (MMN, P3a, P50 and N100 indices, PPI, startle habituation, antisaccade), neurocognitive (WRAT-3 Reading, LNS-forward, LNS-reorder, WCST-64, CVLT-II). In addition, patients were rated on clinical symptom severity as well as functional capacity and status measures (GAF, UPSA, SOF). 223 subjects (SZ n = 163; NCS n = 58) returned for retesting after 1 year.ResultsMost neurophysiological and neurocognitive measures exhibited medium-to-large deficits in schizophrenia, moderate-to-substantial stability across the retest interval, and were independent of fluctuations in clinical status. Clinical symptoms and functional measures also exhibited substantial stability. A Longitudinal Endophenotype Ranking System (LERS) was created to rank neurophysiological and neurocognitive biomarkers according to their effect sizes across endophenotype criteria.ConclusionsThe majority of neurophysiological and neurocognitive measures exhibited deficits in patients, stability over a 1-year interval and did not demonstrate practice or time effects supporting their use as endophenotypes in neural substrate and genomic studies. These measures hold promise for informing the "gene-to-phene gap" in schizophrenia research
Reproducing Kernels of Generalized Sobolev Spaces via a Green Function Approach with Distributional Operators
In this paper we introduce a generalized Sobolev space by defining a
semi-inner product formulated in terms of a vector distributional operator
consisting of finitely or countably many distributional operators
, which are defined on the dual space of the Schwartz space. The types of
operators we consider include not only differential operators, but also more
general distributional operators such as pseudo-differential operators. We
deduce that a certain appropriate full-space Green function with respect to
now becomes a conditionally positive
definite function. In order to support this claim we ensure that the
distributional adjoint operator of is
well-defined in the distributional sense. Under sufficient conditions, the
native space (reproducing-kernel Hilbert space) associated with the Green
function can be isometrically embedded into or even be isometrically
equivalent to a generalized Sobolev space. As an application, we take linear
combinations of translates of the Green function with possibly added polynomial
terms and construct a multivariate minimum-norm interpolant to data
values sampled from an unknown generalized Sobolev function at data sites
located in some set . We provide several examples, such
as Mat\'ern kernels or Gaussian kernels, that illustrate how many
reproducing-kernel Hilbert spaces of well-known reproducing kernels are
isometrically equivalent to a generalized Sobolev space. These examples further
illustrate how we can rescale the Sobolev spaces by the vector distributional
operator . Introducing the notion of scale as part of the
definition of a generalized Sobolev space may help us to choose the "best"
kernel function for kernel-based approximation methods.Comment: Update version of the publish at Num. Math. closed to Qi Ye's Ph.D.
thesis (\url{http://mypages.iit.edu/~qye3/PhdThesis-2012-AMS-QiYe-IIT.pdf}
CaMKII Controls Whether Touch Is Painful
The sensation of touch is initiated when fast conducting low-threshold mechanoreceptors (Aβ-LTMRs) generate impulses at their terminals in the skin. Plasticity in this system is evident in the process of adaption, in which a period of diminished sensitivity follows prior stimulation. CaMKII is an ideal candidate for mediating activity-dependent plasticity in touch because it shifts into an enhanced activation state after neuronal depolarizations and can thereby reflect past firing history. Here we show that sensory neuron CaMKII autophosphorylation encodes the level of Aβ-LTMR activity in rat models of sensory deprivation (whisker clipping, tail suspension, casting). Blockade of CaMKII signaling limits normal adaptation of action potential generation in Aβ-LTMRs in excised skin. CaMKII activity is also required for natural filtering of impulse trains as they travel through the sensory neuron T-junction in the DRG. Blockade of CaMKII selectively in presynaptic Aβ-LTMRs removes dorsal horn inhibition that otherwise prevents Aβ-LTMR input from activating nociceptive lamina I neurons. Together, these consequences of reduced CaMKII function in Aβ-LTMRs cause low-intensity mechanical stimulation to produce pain behavior. We conclude that, without normal sensory activity to maintain adequate levels of CaMKII function, the touch pathway shifts into a pain system. In the clinical setting, sensory disuse may be a critical factor that enhances and prolongs chronic pain initiated by other conditions.
SIGNIFICANCE STATEMENT: The sensation of touch is served by specialized sensory neurons termed low-threshold mechanoreceptors (LTMRs). We examined the role of CaMKII in regulating the function of these neurons. Loss of CaMKII function, such as occurred in rats during sensory deprivation, elevated the generation and propagation of impulses by LTMRs, and altered the spinal cord circuitry in such a way that low-threshold mechanical stimuli produced pain behavior. Because limbs are protected from use during a painful condition, this sensitization of LTMRs may perpetuate pain and prevent functional rehabilitation
Recommended from our members
Relationships between changes in sustained fronto-striatal connectivity and positive affect with antidepressant treatment in major depression
Objective: Deficits in positive affect and their neural bases have been associated with major depression. However, whether reductions in positive affect result solely from an overall reduction in nucleus accumbens activity and fronto-striatal connectivity or the additional inability to sustain engagement of this network over time is unknown. The authors sought to determine whether treatment-induced changes in the ability to sustain nucleus accumbens activity and fronto-striatal connectivity during the regulation of positive affect are associated with gains in positive affect.
Method: Using fMRI, the authors assessed the ability to sustain activity in reward-related networks when attempting to increase positive emotion during per- formance of an emotion regulation para- digm in 21 depressed patients before and after 2 months of antidepressant treat- ment. Over the same interval, 14 healthy comparison subjects underwent scanning as well.
Results: After 2 months of treatment, self-reported positive affect increased. The patients who demonstrated the largest increases in sustained nucleus accumbens activity over the 2 months were those who demonstrated the largest increases in positive affect. In addition, the patients who demonstrated the largest increases in sustained fronto-striatal connectivity were also those who demonstrated the largest increases in positive affect when control- ling for negative affect. None of these associations were observed in healthy comparison subjects.
Conclusions: Treatment-induced change in the sustained engagement of fronto- striatal circuitry tracks the experience of positive emotion in daily life. Studies examining reduced positive affect in a va- riety of psychiatric disorders might benefit from examining the temporal dynamics of brain activity when attempting to under- stand changes in daily positive affect
A multinuclear solid state NMR, density functional theory and X-Ray diffraction study of hydrogen bonding in Group I hydrogen dibenzoates
An NMR crystallographic approach incorporating multinuclear solid state NMR (SSNMR), X-ray structure determinations and density functional theory (DFT) are used to characterise the H bonding arrangements in benzoic acid (BZA) and the corresponding Group I alkali metal hydrogen dibenzoates (HD) systems. Since the XRD data often cannot precisely confirm the proton position within the hydrogen bond, the relationship between the experimental SSNMR parameters and the ability of gauge included plane augmented wave (GIPAW) DFT to predict them becomes a powerful constraint that can assist with further structure refinement. Both the 1H and 13C MAS NMR methods provide primary descriptions of the H bonding via accurate measurements of the 1H and 13C isotropic chemical shifts, and the individual 13C chemical shift tensor elements; these are unequivocally corroborated by DFT calculations, which together accurately describe the trend of the H bonding strength as the size of the monovalent cation changes. In addition, 17O MAS and DOR NMR form a powerful combination to characterise the O environments, with the DOR technique providing highly resolved 17O NMR data which helps verify unequivocally the number of inequivalent O positions for the conventional 17O MAS NMR to process. Further multinuclear MAS and static NMR studies involving the quadrupolar 7Li, 39K, 87Rb and 133Cs nuclei, and the associated DFT calculations, provide trends and a corroboration of the H bond geometry which assist in the understanding of these arrangements. Even though the crystallographic H positions in each H bonding arrangement reported from the single crystal X-ray studies are prone to uncertainty, the good corroboration between the measured and DFT calculated chemical shift and quadrupole tensor parameters for the Group I alkali species suggest that these reported H positions are reliable
Quantitative Comparative Statics by Relative Derivatives on IS-LM with Five Production Factors Containing Multiple Energy Sources
Abstract This paper applies our established analytic technique of the relative derivative, (dy/dx)(a/b), to a quantitative comparative static analysis of a macroeconomy as based on the IS-LM framework coupled with a production function of five factors, capital, labor, oil, coal, and solar energy, resulting in twelve linear equations containing the general equilibrium growth rates of twelve endogenous variables, which are the six pairs of the (price, quantity) for the above output and five inputs. We conduct several simulations by substituting economically sensible values into all the parameters with some alterations for mathematical comparison, and finally we conclude with a summary remark. Mathematics Subject Classification: 91B02, 26B10, 91B62, 91B64, 91B7
- …
