9,557 research outputs found
Relativistic Hartree approach including both positive- and negative-energy bound states
We develop a relativistic model to describe the bound states of positive
energy and negative energy in finite nuclei at the same time. Instead of
searching for the negative-energy solution of the nucleon's Dirac equation, we
solve the Dirac equations for the nucleon and the anti-nucleon simultaneously.
The single-particle energies of negative-energy nucleons are obtained through
changing the sign of the single-particle energies of positive-energy
anti-nucleons. The contributions of the Dirac sea to the source terms of the
meson fields are evaluated by means of the derivative expansion up to the
leading derivative order for the one-meson loop and one-nucleon loop. After
refitting the parameters of the model to the properties of spherical nuclei,
the results of positive-energy sector are similar to that calculated within the
commonly used relativistic mean field theory under the no-sea approximation.
However, the bound levels of negative-energy nucleons vary drastically when the
vacuum contributions are taken into account. It implies that the
negative-energy spectra deserve a sensitive probe to the effective interactions
in addition to the positive-energy spectra.Comment: 38 pages, Latex, 8 figures included; Int. J. Mod. Phys. E, in pres
On scission configuration in ternary fission
A static scission configuration in cold ternary fission has been considered
in the framework of two mean field approaches. The virial theorems has been
suggested to investigate correlations in the phase space, starting from a
kinetic equation. The inverse mean field method is applied to solve
single-particle Schredinger equation, instead of constrained selfconsistent
Hartree-Fock equations. It is shown, that it is possible to simulate
one-dimensional three-center system via inverse scattering method in the
approximation of reflectless single-particle potentialsComment: 11 pages, 1 figure, Fusion Dynamics at the Extremes, Int. Workshop,
Dubna, Russia, May 2000. To be published in World Scientifi
Optical counterparts of ROSAT X-ray sources in two selected fields at low vs. high Galactic latitudes
The optical identification of large number of X-ray sources such as those
from the ROSAT All-Sky Survey is challenging with conventional spectroscopic
follow-up observations. We investigate two ROSAT All-Sky Survey fields of size
10 * 10 degrees each, one at galactic latitude b = 83 deg (Com), the other at b
= -5 deg (Sge), in order to optically identify the majority of sources. We used
optical variability, among other more standard methods, as a means of
identifying a large number of ROSAT All-Sky Survey sources. All objects fainter
than about 12 mag and brighter than about 17 mag, in or near the error circle
of the ROSAT positions, were tested for optical variability on hundreds of
archival plates of the Sonneberg field patrol.
The present paper contains probable optical identifications of altogether 256
of the 370 ROSAT sources analysed. In particular, we found 126 AGN (some of
them may be misclassified CVs), 17 likely clusters of galaxies, 16 eruptive
double stars (mostly CVs), 43 chromospherically active stars, 65 stars brighter
than about 13 mag, 7 UV Cet stars, 3 semiregular resp. slow irregular variable
stars of late spectral type, 2 DA white dwarfs, 1 Am star, 1 supernova remnant
and 1 planetary nebula.
X-ray emission is, expectedly, tightly correlated with optical variability,
and thus our new method for optically identifying X-ray sources is demonstrated
to be feasible.Comment: 92 pages, 521 figures, A&A (accepted
A Note on a Particle-Antiparticle Interaction
We develop an iso spin like formulation with particles and their anti
particle counterparts. This leads to a new shortlived interaction between them,
valid at very high energies and mediated by massive particles. We point out
that evidence for this is already suggested by the very recent observations by
the CDF team at Fermi Lab.Comment: 8 pages latex; Int.J.Mod.Phys E, 201
Nonlinear waves of nuclear density
Nonlinear excitations of nuclear density are considered in the framework of
semiclassical nonlinear nuclear hydrodynamics. Possible types of stationary
nonlinear waves in nuclear media are analysed using Nonlinear Schroedinger
equation of fifth order and classified using a simple mechanical picture. It is
shown that a rich spectrum of nonlinear oscillations in one-dimensional nuclear
medium exist.Comment: 18 pages, 5 figure
- …
