138 research outputs found
Multi-messenger observations of a binary neutron star merger
On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
Metabolomic analysis of human disease and its application to the eye
Metabolomics, the analysis of the metabolite profile in body fluids or tissues, is being applied to the analysis of a number of different diseases as well as being used in following responses to therapy. While genomics involves the study of gene expression and proteomics the expression of proteins, metabolomics investigates the consequences of the activity of these genes and proteins. There is good reason to think that metabolomics will find particular utility in the investigation of inflammation, given the multi-layered responses to infection and damage that are seen. This may be particularly relevant to eye disease, which may have tissue specific and systemic components. Metabolomic analysis can inform us about ocular or other body fluids and can therefore provide new information on pathways and processes involved in these responses. In this review, we explore the metabolic consequences of disease, in particular ocular conditions, and why the data may be usefully and uniquely assessed using the multiplexed analysis inherent in the metabolomic approach
Barriers to colorectal cancer screening in community health centers: A qualitative study
<p>Abstract</p> <p>Background</p> <p>Colorectal cancer screening rates are low among disadvantaged patients; few studies have explored barriers to screening in community health centers. The purpose of this study was to describe barriers to/facilitators of colorectal cancer screening among diverse patients served by community health centers.</p> <p>Methods</p> <p>We identified twenty-three outpatients who were eligible for colorectal cancer screening and their 10 primary care physicians. Using in-depth semi-structured interviews, we asked patients to describe factors influencing their screening decisions. For each unscreened patient, we asked his or her physician to describe barriers to screening. We conducted patient interviews in English (n = 8), Spanish (n = 2), Portuguese (n = 5), Portuguese Creole (n = 1), and Haitian Creole (n = 7). We audiotaped and transcribed the interviews, and then identified major themes in the interviews.</p> <p>Results</p> <p>Four themes emerged: 1) Unscreened patients cited lack of trust in doctors as a barrier to screening whereas few physicians identified this barrier; 2) Unscreened patients identified lack of symptoms as the reason they had not been screened; 3) A doctor's recommendation, or lack thereof, significantly influenced patients' decisions to be screened; 4) Patients, but not their physicians, cited fatalistic views about cancer as a barrier. Conversely, physicians identified competing priorities, such as psychosocial stressors or comorbid medical illness, as barriers to screening. In this culturally diverse group of patients seen at community health centers, similar barriers to screening were reported by patients of different backgrounds, but physicians perceived other factors as more important.</p> <p>Conclusion</p> <p>Further study of these barriers is warranted.</p
Ca2+-induced changes in energy metabolism and viability of melanoma cells
Cancer cells are characterized by a high rate of glycolysis, which is their primary energy source. We show here that a rise in intracellular-free calcium ion (Ca2+), induced by Ca2+-ionophore A23187, exerted a deleterious effect on glycolysis and viability of B16 melanoma cells. Ca2+-ionophore caused a dose-dependent detachment of phosphofructokinase (EC 2.7.1.11), one of the key enzymes of glycolysis, from cytoskeleton. It also induced a decrease in the levels of glucose 1,6-bisphosphate and fructose 1,6-bisphosphate, the two stimulatory signal molecules of glycolysis. All these changes occurred at lower concentrations of the drug than those required to induce a reduction in viability of melanoma cells. We also found that low concentrations of Ca2+-ionophore induced an increase in adenosine 5′-triphosphate (ATP), which most probably resulted from the increase in mitochondrial-bound hexokinase, which reflects a defence mechanism. This mechanism can no longer operate at high concentrations of the Ca2+-ionophore, which causes a decrease in mitochondrial and cytosolic hexokinase, leading to a drastic fall in ATP and melanoma cell death. The present results suggest that drugs which are capable of inducing accumulation of intracellular-free Ca2+ in melanoma cells would cause a reduction in energy-producing systems, leading to melanoma cell death. © 1999 Cancer Research Campaig
High and Low Molecular Weight Hyaluronic Acid Differentially Regulate Human Fibrocyte Differentiation
Following tissue injury, monocytes can enter the tissue and differentiate into fibroblast-like cells called fibrocytes, but little is known about what regulates this differentiation. Extracellular matrix contains high molecular weight hyaluronic acid (HMWHA; ∼2×10(6) Da). During injury, HMWHA breaks down to low molecular weight hyaluronic acid (LMWHA; ∼0.8-8×10(5) Da).In this report, we show that HMWHA potentiates the differentiation of human monocytes into fibrocytes, while LMWHA inhibits fibrocyte differentiation. Digestion of HMWHA with hyaluronidase produces small hyaluronic acid fragments, and these fragments inhibit fibrocyte differentiation. Monocytes internalize HMWHA and LMWHA equally well, suggesting that the opposing effects on fibrocyte differentiation are not due to differential internalization of HMWHA or LMWHA. Adding HMWHA to PBMC does not appear to affect the levels of the hyaluronic acid receptor CD44, whereas adding LMWHA decreases CD44 levels. The addition of anti-CD44 antibodies potentiates fibrocyte differentiation, suggesting that CD44 mediates at least some of the effect of hyaluronic acid on fibrocyte differentiation. The fibrocyte differentiation-inhibiting factor serum amyloid P (SAP) inhibits HMWHA-induced fibrocyte differentiation and potentiates LMWHA-induced inhibition. Conversely, LMWHA inhibits the ability of HMWHA, interleukin-4 (IL-4), or interleukin-13 (IL-13) to promote fibrocyte differentiation.We hypothesize that hyaluronic acid signals at least in part through CD44 to regulate fibrocyte differentiation, with a dominance hierarchy of SAP>LMWHA≥HMWHA>IL-4 or IL-13
Human Neural Stem Cells Differentiate and Promote Locomotor Recovery in an Early Chronic Spinal coRd Injury NOD-scid Mouse Model
Traumatic spinal cord injury (SCI) results in partial or complete paralysis and is characterized by a loss of neurons and oligodendrocytes, axonal injury, and demyelination/dysmyelination of spared axons. Approximately 1,250,000 individuals have chronic SCI in the U.S.; therefore treatment in the chronic stages is highly clinically relevant. Human neural stem cells (hCNS-SCns) were prospectively isolated based on fluorescence-activated cell sorting for a CD133(+) and CD24(-/lo) population from fetal brain, grown as neurospheres, and lineage restricted to generate neurons, oligodendrocytes and astrocytes. hCNS-SCns have recently been transplanted sub-acutely following spinal cord injury and found to promote improved locomotor recovery. We tested the ability of hCNS-SCns transplanted 30 days post SCI to survive, differentiate, migrate, and promote improved locomotor recovery.hCNS-SCns were transplanted into immunodeficient NOD-scid mice 30 days post spinal cord contusion injury. hCNS-SCns transplanted mice demonstrated significantly improved locomotor recovery compared to vehicle controls using open field locomotor testing and CatWalk gait analysis. Transplanted hCNS-SCns exhibited long-term engraftment, migration, limited proliferation, and differentiation predominantly to oligodendrocytes and neurons. Astrocytic differentiation was rare and mice did not exhibit mechanical allodynia. Furthermore, differentiated hCNS-SCns integrated with the host as demonstrated by co-localization of human cytoplasm with discrete staining for the paranodal marker contactin-associated protein.The results suggest that hCNS-SCns are capable of surviving, differentiating, and promoting improved locomotor recovery when transplanted into an early chronic injury microenvironment. These data suggest that hCNS-SCns transplantation has efficacy in an early chronic SCI setting and thus expands the "window of opportunity" for intervention
Antiproliferative and proapoptotic activity of GUT-70 mediated through potent inhibition of Hsp90 in mantle cell lymphoma
Treatment of ocular allergies:nonpharmacologic, pharmacologic and immunotherapy
Ocular allergy is a significant and growing issue worldwide but for many patients, it is often not differentiated from systemic conditions, such as hay fever. Management of seasonal and perennial allergic conjunctivitis is often poor. Management is principally through avoidance measures (blocking or hygiene), nonpharmaceutical (such as artificial tears and cold compresses) and pharmaceutical (such as topical antihistamines and prophylactic mast cell stabilizers). Vernal and atopic keratoconjunctivitis are more severe and generally need treatment with NSAIDs, steroids and immunomodulators. Giant papillary conjunctivitis can be related to allergy but also is often contact lens related and in such cases can be managed by a period of abstinence and replacement of the lens or a change in lens material and/or design. Immunotherapy can be efficacious in severe, persistent cases of contact lens or allergic conjunctivitis
Midterm results of coracoclavicular stabilization with double augmentation for acute acromioclavicular dislocation
Foxp3 and Treg cells in HIV-1 infection and immuno-pathogenesis
FoxP3+CD4+CD25+ regulatory T (Treg) cells are implicated in a number of pathologic processes including elevated levels in cancers and infectious diseases, and reduced levels in autoimmune diseases. Treg cells are activated to modulate immune responses to avoid over-reactive immunity. However, conflicting findings are reported regarding relative levels of Treg cells during HIV-1 infection and disease progression. The role of Treg cells in HIV-1 diseases (aberrant immune activation) is poorly understood due to lack of a robust model. We summarize here the regulation and function of Foxp3 in Treg cells and in modulating HIV-1 replication. Based on recent findings from SIV/monkey and HIV/humanized mouse models, a model of the dual role of Treg cells in HIV-1 infection and immuno-pathogenesis is discussed
- …
